Skip to main content
Log in

Simulated soft tissue nanoindentation: A finite element study

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

To address the growing interest in nanoindentation for biomaterials, the following finite element study investigated the influence of indentation testing protocol and substrate geometry on quasi-static and dynamic load-displacement behavior of linear viscoelastic materials. For a standard linear solid, the conventional quasi-static indentation modulus, EQS, fell between the instantaneous and equilibrium modulus of the model. EQS approached the equilibrium modulus only for indentation unloading times 1000 times greater than the characteristic relaxation time of the model. It was nearly insensitive to other changes in the indentation testing protocol, such as tip radius and penetration depth, exhibiting variations of only 5–10%. Dynamic nanoindentation provided a quantitatively accurate assessment of the complex dynamic modulus (within ±12%) for a range material of parameters at physiologically relevant testing parameters. Both quasi-static and dynamic moduli calculated from the irregular surfaces varied with the size and shape of the irregularities but were still within 10% of the smooth surface values for penetration depths larger than the dimensions of the surface irregularities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.A. Smith-Adaline, S.K. Volkman, M.A. Ignelzi, Jr., J. Slade, S. Platte, and S.A. Goldstein: Mechanical environment alters tissue formation patterns during fracture repair. J. Ortho. Res. 22, 1079 (2004).

    CAS  Google Scholar 

  2. D.J.S. Hulmes, M.E. Marsden, R.K. Strachan, R.E. Harvey, N. McInnes, and D.L. Gardner: Intra-articular hyaluronate in experimental rabbit osteoarthritis can prevent changes in cartilage proteoglycan content. Osteoarthritis Cartilage 12, 232 (2004).

    CAS  Google Scholar 

  3. H. Hertz: On the contact of solid, elastic bodies. J. Reine Angew. Math. 92, 156 (1881).

    Google Scholar 

  4. I.N. Sneddon: The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int. J. Engng. Sci. 3, 47 (1965).

    Google Scholar 

  5. M.F. Doerner and W.D. Nix: A method or interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1, 601 (1986).

    Google Scholar 

  6. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    CAS  Google Scholar 

  7. E.H. Lee: Stress analysis in visco-elastic bodies. Quarterly Appl. Math. 13, 183 (1955).

    Google Scholar 

  8. J.R.M. Radok: Visco-elastic stress analysis. Quarterly Appl. Math. 15, 198 (1957).

    Google Scholar 

  9. E.H. Lee and J.R.M. Radok: The contact problem for viscoelastic bodies. J. Appl. Mech. 27, 438 (1960).

    Google Scholar 

  10. S.C. Hunter: The Hertz problem for a rigid spherical indenter and a viscoelastic half-space. J. Mech. Phys. Solids 8, 219 (1960).

    Google Scholar 

  11. G.A.C. Graham: Contact problem in linear theory of viscoelasticity when time dependent contact area has any number of maxima and minima. Int. J. Eng. Sci. 5, 495 (1967).

    Google Scholar 

  12. W.H. Yang: Contact problem for viscoelastic bodies. J. Appl. Mech. 33, 395 (1966).

    Google Scholar 

  13. T.C.T. Ting: Contact stresses between a rigid indenter and a viscoelastic half-space. J. Appl. Mech. 33, 845 (1966).

    Google Scholar 

  14. S. Shimizu, T. Yanagimoto, and M. Sakai: Pyramidal indentation load–depth curves of viscoelastic materials. J. Mater. Res. 14, 4075 (1999).

    CAS  Google Scholar 

  15. M. Sakai: Time-dependent viscoelastic relation between load and penetration for an axisymmetric indenter. Philos. Mag. A 82, 1841 (2002).

    CAS  Google Scholar 

  16. H. Lu, B. Wang, J. Ma, G. Huang, and H. Viswanathan: Measurement of creep compliance of solid polymers by nanoindentation. Mech. Time-Depend. Mater. 7, 189 (2003).

    Google Scholar 

  17. Y.T. Cheng and C.M. Cheng: Scaling, dimensional analysis, and indentation measurements. Mater. Sci. Eng. R 44, 91 (2004).

    Google Scholar 

  18. B.J. Briscoe, L. Fiori, and E. Pelillo: Nano-indentation of polymeric surfaces. J. Phys. D: App. Phys. 31, 2395 (1998).

    CAS  Google Scholar 

  19. C. Klapperich, K. Komvopolous, and L.A. Pruitt: Nanomechanical properties of polymers determined from nanoindentation experiments. J. Tribol. 123, 624 (2001).

    CAS  Google Scholar 

  20. S. Yang, Y.W. Zhang, and K.Y. Zeng: Analysis of nanoindentation creep for polymeric materials. J. Appl. Phys. 95, 3655 (2004).

    CAS  Google Scholar 

  21. A.H.W. Ngan and B. Tang: Viscoelastic effects during unloading in depth-sensing indentation. J Mater. Res. 17, 2604 (2002).

    CAS  Google Scholar 

  22. B. Tang and A.H.W. Ngan: Accurate measurement of tip sample contact size during nanoindentation of viscoelastic materials. J. Mater. Res. 18, 1141 (2003).

    CAS  Google Scholar 

  23. J.Y. Rho, T.Y. Tsui, and G.M. Pharr: Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. Biomaterials 20, 1325 (1998).

    Google Scholar 

  24. J.Y. Rho, M.E. Roy, T.Y. Tsui, and G.M. Pharr: Elastic properties of microstructural components of human bone tissue as measured by nanoindentation. J. Biomed. Mater. Res. 45, 48 (1999).

    CAS  Google Scholar 

  25. Z. Fan, J.G. Swadener, J.Y. Rho, M.E. Roy, and G.M. Pharr: Anisotropic properties of human tibial cortical bone as measured by nanoindentation. J. Ortho. Res. 20, 806 (2002).

    CAS  Google Scholar 

  26. S. Habelitz, S.J. Marshall, G.W. Marshall, and M. Balooch: Mechanical properties of human dental enamel on the nanometer scale. Archive Oral Bio. 46, 173 (2001).

    CAS  Google Scholar 

  27. S.P. Ho, M. Balooch, S.J. Marshall, and G.W. Marshall: Local properties of a functionally graded interphase between cementum and dentin. J. Biomed. Mater. Res. A 70A, 480 (2004).

    CAS  Google Scholar 

  28. G. Balooch, G.W. Marshall, S.J. Marshall, O.L. Warren, S.A.S. Asif, and M. Balooch: Evaluation of a new modulus mapping technique to investigate microstructural features of human teeth. J. Biomech. 37, 1223 (2004).

    CAS  Google Scholar 

  29. D. Ebenstein, A. Kuo, J.J. Rodrigo, A.H. Reddi, M. Reis, and L. Pruitt: A nanoindentation technique for functional evaluation of cartilage repair tissue. J. Mater. Res. 19, 273 (2004).

    CAS  Google Scholar 

  30. D.M. Ebenstein and L.A. Pruitt: Nanoindentation of soft hydrated materials for application to vascular tissues. J. Biomed. Mater. Res. A 69A, 222 (2004).

    CAS  Google Scholar 

  31. K. Hu, P. Radhakrishnan, R.V. Patel, and J.J. Mao: Regional structural and viscoelastic properties of fibrocartilage upon dynamic nanoindentation of the articular condyle. J Struct. Bio. 136, 46 (2001).

    CAS  Google Scholar 

  32. J.L. Loubet, W.C. Oliver, and B.N. Lucas: Measurement of the loss tangent of low-density polyethylene with a nanoindentation technique. J. Mater. Res. 15, 1195 (2000).

    CAS  Google Scholar 

  33. S.A. Asif, K.J. Wahl, and R.J. Colton: Nanoindentation and contact stiffness measurement using force modulation with a capacitive load-displacement transducer. Rev. Sci. Instrum. 70, 2408 (1999).

    CAS  Google Scholar 

  34. C.S. Lee, J.Y. Jho, K. Choi, and T.W. Hwang: Dynamic mechanical behavior of ultra-high molecular weight polyethylene irradiated with gamma rays. Macromol. Res. 12, 141 (2004).

    CAS  Google Scholar 

  35. K. Park, S. Mishra, G. Lewis, J. Losby, Z.F. Fan, and J.B. Park: Quasi-static and dynamic nanoindentation studies on highly crosslinked ultra-high-molecular-weight polyethylene. Biomaterials 25, 2427 (2004).

    CAS  Google Scholar 

  36. J.C. Iatridis, J. Wu, J.A. Yandow, and H.M. Langevin: Subcutaneous tissue mechanical behavior is linear and viscoelastic under uniaxial tension. Connect. Tissue Res. 44, 208 (2003).

    Google Scholar 

  37. S.J. Ferguson, J.T. Bryant, and K. Ito: The material properties of the bovine acetabular labrum. J. Orthop. Res. 19, 887 (2001).

    CAS  Google Scholar 

  38. S. Krag and T.T. Andreassen: Biomechanical measurements of the porcine lens capsule. Exp. Eye Res. 62, 253 (1996).

    CAS  Google Scholar 

  39. L.A. Setton, V.C. Mow, F.J. Muller, J.C. Pita, and D.S. Howell: The mechanical behavior of articular cartilage are significantly altered following transection of the anterior cruciate ligament. J. Orthop. Res. 12, 473 (1994).

    Google Scholar 

  40. V. Roth, J.M. Schoonbeck, and V.C. Mow: Low frequency dynamic behavior of articular cartilage under torsional shear. Trans. Orthop. Res. Soc. 7, 150 (1982).

    Google Scholar 

  41. R.L. Sah, A.J. Grodzinsky, A.H. Haas, and J.D. Sandy: Effects of static and dynamic compression on matrix metabolism in cartilage explants, in Articular Cartilage and Osteoarthritis, edited by K.E. Keuttner, R. Schleyerbach, J.G. Peyron, and V.C. Hascall (Raven Press, New York, 1992), p. 373.

    Google Scholar 

  42. C-Y. Huang, V.C. Mow, and G.A. Ateshian: The role of flowindependent viscoelasticity in the biphasic tensile and compressive: Responses of articular cartilage. J. Biomech. Eng. 123, 410 (2001).

    CAS  Google Scholar 

  43. V.C. Mow and A. Ratcliffe: Structure and function of articular cartilage and meniscus, in Basic Orthopaedic Biomechanics, edited by V.C. Mow and W.C. Hayes. (Lippincott-Raven, Philadelphia, PA, 1997), pp.113–1

    Google Scholar 

  44. D.L. Skaggs, M. Weidenbaum, and J.C. Iatridis: Regional variation in tensile properties and biochemical composition of the human lumbar anulus fibrosus. Spine 19, 1310 (1994).

    CAS  Google Scholar 

  45. S.P. Li, A.G. Patwardhan, F.M.L. Amirouche, R. Harvey, and K.P. Meade: Limitations of the standard linear solid model of intervertebral discs subject to prolonged loading and lowfrequency vibration in axial-compression. J. Biomech. 28, 779 (1995).

    CAS  Google Scholar 

  46. R. Lakes: Viscoelastic Solids (CRC Press, Boca Raton, FL, 1998).

    Google Scholar 

  47. S. Akizuki, V.C. Mow, F. Muller, J.C. Pita, D.S. Howell, and D.H. Manicourt: Tensile properties of human knee-joint cartilage: Influence of ionic conditions, weight bearing and fibrillation on the tensile modulus. J. Ortho. Res. 4, 379 (1986).

    CAS  Google Scholar 

  48. P.E. Riches, N. Dhillon, J. Lotz, A.W. Woods, and D.S. McNally: The internal mechanics of the intervertebral disk under cyclic loading. J. Biomech. 35, 1263 (2002).

    CAS  Google Scholar 

  49. M. Fortin, J. Soulhat, A. Shirazi-Ali, E.B. Hunziker, and M.D. Buschmann: Unconfined compression of articular cartilage: Nonlinear behavior and comparison with a fibril-reinforced biphasic model. J. Biomech. Eng. 122, 189 (2000).

    CAS  Google Scholar 

  50. C.G. Armstrong, V.M. Lai, and V.C. Mow: An analysis of the unconfined compression of articular cartilage. J. Biomech. Eng. 106, 165 (1984).

    CAS  Google Scholar 

  51. P.P. Provenzano, R.S. Lakes, D.T. Corr, and R. Vanderby, Jr.: Application of nonlinear viscoelastic models to describe ligament behavior. Biomech. Model Mechanobiol. 1, 45 (2002).

    CAS  Google Scholar 

  52. D.P. Pioletti and L.R. Rakotomanana: On the independence of time and strain effects in the stress relaxation of ligaments and tendons. J. Biomech. 33, 1729 (2000).

    CAS  Google Scholar 

  53. Y.C. Fung: Biomechanics of Living Tissues (Springer-Verlag, New York, 1996)

    Google Scholar 

  54. F. Carrillo, S. Gupta, M. Balooch, L.A. Pruitt, S.J. Marshall, G.W. Marshall, and C.M. Puttlitz: Nanoindentation of soft materials (unpublished).

  55. M. Wang, K.M. Liechti, J.M. White, and R.M. Winter: Nanoindentation of polymeric thin films with interfacial force microscopy. J. Mech. Phy. Solids 52, 2329 (2004).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Puttlitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, S., Carrillo, F., Balooch, M. et al. Simulated soft tissue nanoindentation: A finite element study. Journal of Materials Research 20, 1979–1994 (2005). https://doi.org/10.1557/JMR.2005.0247

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2005.0247

Navigation