Skip to main content
Log in

Synchrotron x-ray scattering of ZnO nanorods: Periodic ordering and lattice size

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We demonstrate that synchrotron x-ray powder diffraction (XRD) is a powerful technique for studying the structure and self-organization of zinc-oxide nanostructures. Zinc-oxide nanorods were prepared by a solution-growth method that resulted in uniform nanorods with 2-nm diameter and lengths in the range 10–50 nm. These nanorods were structurally characterized by a combination of small-angle and wide-angle synchrotron XRD and transmission electron microscopy (TEM). Small-angle XRD and TEM were used to investigate nanorod self-assembly and the influence of surfactant/precursor ratio on self-assembly. Wide-angle XRD was used to study the evolution of nanorod growth as a function of synthesis time and surfactant/precursor ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.D. Hicks and M.S. Dresselhaus: Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B 47, 16631 (1993).

    Article  CAS  Google Scholar 

  2. A.P. Alivisatos: Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933 (1996).

    Article  CAS  Google Scholar 

  3. C.M. Lieber: One-dimensional nanostructures: Chemistry, physics & applications. Solid State Commun. 107, 607 (1998).

    Article  CAS  Google Scholar 

  4. J.T. Hu, T.W. Odom, and C.M. Lieber: Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes. Accounts Chem. Res. 32, 435 (1999).

    Article  CAS  Google Scholar 

  5. J.D. Holmes, K.P. Johnston, R.C. Doty, and B.A. Korgel: Control of thickness and orientation of solution-grown silicon nanowires. Science 287, 1471 (2000).

    Article  CAS  Google Scholar 

  6. M.H. Huang, S. Mao, H. Feick, H.Q. Yan, Y.Y. Wu, H. Kind, E. Weber, R. Russo, and P.D. Yang: Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897 (2001).

    Article  CAS  Google Scholar 

  7. N.R. Jana, L. Gearheart, and C.J. Murphy: Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J. Phys. Chem. B 105, 4065 (2001).

    Article  CAS  Google Scholar 

  8. L. Manna, E.C. Scher, and A.P. Alivisatos: Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J. Am. Chem. Soc. 122, 12700 (2000).

    Article  CAS  Google Scholar 

  9. X.G. Peng, L. Manna, W.D. Yang, J. Wickham, E. Scher, A. Kadavanich, and A.P. Alivisatos: Shape control of CdSe nanocrystals. Nature 404, 59 (2000).

    Article  CAS  Google Scholar 

  10. B. Liu and H.C. Zeng: Room temperature solution synthesis of monodispersed single-crystalline ZnO nanorods and derived hierarchical nanostructures. Langmuir 20, 4196 (2004).

    Article  CAS  Google Scholar 

  11. P.D. Cozzoli, A. Kornowski, and H. Weller: Low-temperature synthesis of soluble and processable organic-capped anatase TiO2 nanorods. J. Am. Chem. Soc. 125, 14539 (2003).

    Article  CAS  Google Scholar 

  12. B.A. Korgel and D. Fitzmaurice: Self-assembly of silver nanocrystals into two-dimensional nanowire arrays. Adv. Mater. 10, 661 (1998).

    Article  CAS  Google Scholar 

  13. B. Nikoobakht, Z.L. Wang, and M.A. El-Sayed: Self-assembly of gold nanorods. J. Phys. Chem. B 104, 8635 (2000).

    Article  CAS  Google Scholar 

  14. Z.P. Liu, Z.K. Hu, J.B. Liang, S. Li, Y. Yang, S. Peng, and Y.T. Qian: Size-controlled synthesis and growth mechanism of monodisperse tellurium nanorods by a surfactant-assisted method. Langmuir 20, 214 (2004).

    Article  CAS  Google Scholar 

  15. M. Li, H. Schnablegger, and S. Mann: Coupled synthesis and selfassembly of nanoparticles to give structures with controlled organization. Nature 402, 393 (1999).

    Article  CAS  Google Scholar 

  16. H. Maeda and Y. Maeda: Atomic force microscopy studies for investigating the smectic structures of colloidal crystals of α–FeOOH. Langmuir 12, 1446 (1996).

    Article  CAS  Google Scholar 

  17. A. Manna, T. Imae, M. Iida, and N. Hisamatsu: Formation of silver nanoparticles from a N-hexadecylethylenediamine silver nitrate complex. Langmuir 17, 6000 (2001).

    Article  CAS  Google Scholar 

  18. M.A. Firestone, D.E. Williams, S. Seifert, and R. Csencsits: Nanoparticle arrays formed by spatial compartmentalization in a complex fluid. Nano Lett. 1, 129 (2001).

    Article  CAS  Google Scholar 

  19. L.M. Bronstein, C. Linton, R. Karlinsey, B. Stein, D.I. Svergun, J.W. Zwanziger, and R.J. Spontak: Synthesis of metal-loaded poly(aminohexyl)(aminopropyl)silsesquioxane colloids and their self-organization into dendrites. Nano Lett. 2, 873 (2002).

    Article  CAS  Google Scholar 

  20. G. Garnweitner, B. Smarsly, R. Assink, W. Ruland, E. Bond, and C.J. Brinker: Self-assembly of an environmentally responsive polymer/silica nanocomposite. J. Am. Chem. Soc. 125, 5626 (2003).

    Article  CAS  Google Scholar 

  21. M.H. Huang, Y.Y. Wu, H. Feick, N. Tran, E. Weber, and P.D. Yang: Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater. 13, 113 (2001).

    Article  CAS  Google Scholar 

  22. P.D. Yang, H.Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R.R. He, and H.J. Choi: Controlled growth of ZnO nanowires and their optical properties. Adv. Funct. Mater. 12, 323 (2002).

    Article  CAS  Google Scholar 

  23. B. Cheng and E.T. Samulski: Hydrothermal synthesis of onedimensional ZnO nanostructures with different aspect ratios. Chem. Commun. 8, 986 (2004).

    Article  Google Scholar 

  24. M. Yin, Y. Gu, I.L. Kuskovsky, T. Andelman, Y. Zhu, G.F. Neumark, and S. O’Brien: Zinc oxide quantum rods. J. Am. Chem. Soc. 126, 6206 (2004).

    Article  CAS  Google Scholar 

  25. F. Kim, S. Kwan, J. Akana, and P.D. Yang: Langmuir-Blodgett nanorod assembly. J. Am. Chem. Soc. 123, 4360 (2001).

    Article  CAS  Google Scholar 

  26. N.R. Jana, L.A. Gearheart, S.O. Obare, C.J. Johnson, K.J. Edler, S. Mann, and C.J. Murphy: Liquid crystalline assemblies of ordered gold nanorods. J. Mater. Chem. 12, 2909 (2002).

    Article  CAS  Google Scholar 

  27. L.S. Li, J.T. Hu, W.D. Yang, and A.P. Alivisatos: Band gap variation of size- and shape-controlled colloidal CdSe quantum rods. Nano Lett. 1, 349 (2001).

    Article  CAS  Google Scholar 

  28. V. Perebeinos, S.W. Chan, and F. Zhang: ‘Madelung model’ prediction for dependence of lattice parameter on nanocrystal size. Solid State Commun. 123, 295 (2002).

    Article  CAS  Google Scholar 

  29. V. Noack and A. Eychmuller: Annealing of nanometer-sized zinc oxide particles. Chem. Mater. 14, 1411 (2002).

    Article  CAS  Google Scholar 

  30. Z.A. Peng and X.G. Peng: Nearly monodisperse and shapecontrolled CdSe nanocrystals via alternative routes: Nucleation and growth. J. Am. Chem. Soc. 124, 3343 (2002).

    Article  CAS  Google Scholar 

  31. F. Zhang, S.W. Chan, J.E. Spanier, E. Apak, Q. Jin, R.D. Robinson, and I.P. Herman: Cerium oxide nanoparticles: Size-selective formation and structure analysis. Appl. Phys. Lett. 80, 127 (2002).

    Article  CAS  Google Scholar 

  32. M. Yin, A. Willis, F. Redl, N. Turro, and S. O’Brien: Influence of capping groups on the synthesis of α–Fe2O3 nanocrystals. J. Mater. Res. 19, 1208 (2004).

    Article  CAS  Google Scholar 

  33. T. Hyeon, S.S. Lee, J. Park, Y. Chung, and H. Bin Na: Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J. Am. Chem. Soc. 123, 12798 (2001).

    Article  CAS  Google Scholar 

  34. N.S. Pesika, Z.S. Hu, K.J. Stebe, and P.C. Searson: Quenching of growth of ZnO nanoparticles by adsorption of octanethiol. J. Phys. Chem. B 106, 6985 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard M. Osgood Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Z., Andelman, T., Yin, M. et al. Synchrotron x-ray scattering of ZnO nanorods: Periodic ordering and lattice size. Journal of Materials Research 20, 1033–1041 (2005). https://doi.org/10.1557/JMR.2005.0134

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2005.0134

Navigation