Skip to main content
Log in

Inverse scaling functions in nanoindentation with sharp indenters: Determination of material properties

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This paper, based on extensive finite element simulations and scaling analysis, presents scaling functions for the inverse problem in nanoindentation with sharp indenters to determine material properties from nanoindentation response. All the inverse scaling functions were directly compared with results calculated using the large deformation finite element method and are valid from the elastic to the full plastic regimes. To relate the material properties to measurable indentation parameters a new nondimensional experimental parameter Λ=P/(DS) was introduced, where P is load, D is indentation depth, and S is contact stiffness. This parameter is monotonically related to the ratio of yield stress to modulus. The modulus, hardness and yield stress are presented as explicit functions of β and the strain hardening exponent. The error in the inverse modulus, hardness, and yield stress due to uncertainty of the strain hardening exponent was studied and is compared with that of the traditional Oliver–Pharr method. The method of determining the strain hardening exponent from measurement with an additional indenter with a different cone apex angle is described. For this, a scaling function with the strain hardening exponent as the only unknown was obtained. In this way, the modulus, hardness, yield stress and strain hardening exponent may be determined. Experimental results show the inversion method permits the modulus and hardness to be accurately determined irrespective of the effects of pileup or sink-in.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.F. Doerner and W.D. Nix: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1, 601 (1986).

    Article  Google Scholar 

  2. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    CAS  Google Scholar 

  3. W.C. Oliver and G.M. Pharr: Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004).

    Article  CAS  Google Scholar 

  4. A.C. Fischer-Cripps: Nanoindentation (Mechanical Engineering Series, Springer-Verlag, New York, NY, 2002).

    Book  Google Scholar 

  5. D. Tabor: Indentation hardness: Fifty years on—A personal view. Philos. Mag. A 74, 1207 (1996).

    Article  CAS  Google Scholar 

  6. A.K. Bhattacharya and W.D. Nix: Finite element simulation of indentation experiments. Int. J. Solids Struct. 24, 881 (1988).

    Article  Google Scholar 

  7. M. Dao, N. Chollacoop, K.J. Van Vliet, T.A. Venkatesh, and S. Suresh: Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater. 49, 3899 (2001).

    Article  CAS  Google Scholar 

  8. A. Bolshakov and G.M. Pharr: Influences of pileup on the measurement of mechanical properties by load and depth-sensing indentation techniques. J. Mater. Res. 13, 1049 (1998).

    Article  CAS  Google Scholar 

  9. J.A. Knapp, D.M. Follstaedt, S.M. Myers, J.C. Barbour, and T.A. Friedmann: Finite-element modeling of nanoindentation. J. Appl. Phys. 85, 1460 (1999).

    Article  CAS  Google Scholar 

  10. M. Sakai, T. Akatsu, and S. Numata: Finite element analysis for conical indentation unloading of elastic plastic materials with strain hardening. Acta Mater. 52, 2359 (2004).

    Article  CAS  Google Scholar 

  11. M. Mata, M. Anglada, and J. Alcala: Contact deformation regimes around sharp indentations and the concept of the characteristic strain. J. Mater. Res. 17, 964 (2002).

    Article  CAS  Google Scholar 

  12. Y.T. Cheng and C.M. Cheng: Scaling approach to conical indentation in elastic-plastic solids with work hardening. J. Appl. Phys. 84, 1284 (1998).

    Article  CAS  Google Scholar 

  13. C.M. Cheng and Y.T. Cheng: Can stress-strain relationships be obtained from indentation curves using conical and pyramidal indenters? J. Mater. Res. 14, 3493 (1999).

    Article  CAS  Google Scholar 

  14. Y.T. Cheng and C.M. Cheng: What is indentation hardness? Surf. Coat. Technol. 133, 417 (2000).

    Article  Google Scholar 

  15. Y.T. Cheng, Z. Li, and C.M. Cheng: Scaling relationships for indentation measurements. Philos. Mag. A 82, 1821 (2002).

    Article  CAS  Google Scholar 

  16. Y.T. Cheng and C.M. Cheng: Relationships between hardness, elastic modulus, and the work of indentation. Appl. Phys. Lett. 73, 614 (1998).

    Article  CAS  Google Scholar 

  17. L. Wang and S.I. Rokhlin: Universal scaling functions for continuous stiffness nanoindentation with sharp indenters. J. Solids Struct. 42, 3807 (2005).

    Article  Google Scholar 

  18. I.N. Sneddon: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 (1965).

    Article  Google Scholar 

  19. A. Constantinescu and N. Tardieu: On the identification of elastoviscoplastic constitutive laws from indentation tests. Inverse Problems Eng. 9, 19 (2001).

    Article  Google Scholar 

  20. M. Mata and J. Alcalá: Mechanical properties evaluation through indentation experiments in elasto-plastic and fully plastic contact regimes. J. Mater. Res. 18, 1705 (2003).

    Article  CAS  Google Scholar 

  21. Z.H. Xu and D. Rowcliffe: Method to determine the plastic properties of bulk materials by nanoindentation. Philos. Mag. A 82, 1893 (2002).

    Article  CAS  Google Scholar 

  22. J.L. Bucaille, S. Stauss, E. Felder, and J. Michler: Determination of plastic properties of metals by instrumented indentation using different sharp indenters. Acta Mater. 51, 1663 (2003).

    Article  CAS  Google Scholar 

  23. N. Chollacoop, M. Dao, and S. Suresh: Depth-sensing instrumented indentation with dual sharp indenters. Acta Mater. 51, 3713 (2003).

    Article  CAS  Google Scholar 

  24. D. Ma, C.W. Ong, and S.F. Wong: New relationship between Young’s modulus and nonideally sharp indentation parameters. J. Mater. Res. 19, 2144 (2004).

    Article  CAS  Google Scholar 

  25. W.D. Nix and H. Gao: Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411 (1998).

    Article  CAS  Google Scholar 

  26. S. Qu, Y. Huang, W.D. Nix, H. Jiang, F. Zhang, and K.C. Hwang: Indenter tip radius effect on the Nix-Gao relation in micro- and nanoindentation hardness experiments. J. Mater. Res. 19, 3423 (2004).

    Article  CAS  Google Scholar 

  27. D.S. Stone: Elastic rebound between an indenter and a layered specimen: Part I. Model. J. Mater. Res. 13, 3207 (1998).

    Article  CAS  Google Scholar 

  28. D.L. Joslin and W.C. Oliver: A new method for analyzing data from continuous depth-sensing microindentation tests. J. Mater. Res. 5, 123 (1990).

    Article  CAS  Google Scholar 

  29. J.C. Hay, A. Bolshakov, and G.M. Phar: A critical examination of the fundamental relations used in the analysis of nanoindentation data. J. Mater. Res. 14, 2296 (1999).

    Article  CAS  Google Scholar 

  30. C.M. Cheng and Y.T. Cheng: On the initial unloading slope in indentation of elastic-plastic solids by an indenter with an axisymmetric smooth profile. Appl. Phys. Lett. 71, 2623 (1997).

    Article  CAS  Google Scholar 

  31. J.E. Dennis and R.B. Schnabel: Numerical Methods for Uncontrained Optimization and Nonlinear Equations (Prentice-Hall, Englewood Cliffs, NJ, 1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Rokhlin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Ganor, M. & Rokhlin, S.I. Inverse scaling functions in nanoindentation with sharp indenters: Determination of material properties. Journal of Materials Research 20, 987–1001 (2005). https://doi.org/10.1557/JMR.2005.0124

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2005.0124

Navigation