Skip to main content
Log in

Misfit dislocation dissociation and Lomer formation in low mismatch SiGe/Si heterostructures

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Using transmission electron microscopy we observe the dissociation of 60° misfit dislocations at the interface of SiGe/Si multilayers, extending into the substrate for distances of 5.0–7.5 nm. Analysis using elasticity theory shows that this dissociationis the equilibrium configuration for individual 60° misfit dislocations, as it is for 60° mixed dislocations in bulk Si, and that the compressively strained multilayer film serves mainly to position the partial dislocations and stacking fault with respect to the free surface. We observe both undissociated 60° and Lomer edge dislocations after annealing, and conclude that these result from dislocation climb in the interface. Since the dislocations move off their slip plane during climb, they cannot remain dissociated. Significant climb and Lomer dislocation formation for these low misfit layers is observed at temperatures above 850 °C and for samples with a high initial dislocation density, such as found in thicker as-grown samples. The dislocation configuration formed during annealing is distinct from that reported to form during growth of higher mismatch films: the Lomer dislocations tend to be segmented, with the segments connected by perfect 60° dislocations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Hull and E. Stach: in Thin Films: Heteroepitaxial Systems, edited by W.K. Liu and M.B. Santos (World Scientific, River Edge, NJ, 1999), pp. 299–367.

  2. F.K. LeGoues: The effect of strain on the formation of dislocations at the SiGe/Si interface, MRS Bull. 21 (4),38 (1996).

    CAS  Google Scholar 

  3. P.M.J. Maree, J.C. Barbour, van der J.F. Veen, K.L. Kavanagh, C.W. Bulle-LieuwmaT. and M.P.A. Viegers: Generation of misfit dislocations in semiconductors, J. Appl. Phys. 62, 4413 (1987).

    CAS  Google Scholar 

  4. R. Hull, J.C. Bean, L.J. Peticolas, D. Bahnck, B.E. Weir and L.C. Feldman: Quantitative analysis of strain relaxation in GexSi1-x/Si(110) heterostructures and an accurate determination of stacking fault energy in Gex Si1-x alloys, Appl. Phys. Lett. 61, 2802 (1992).

    CAS  Google Scholar 

  5. De B.C. Cooman, C.B. Carter, K.T. Chan and J.R. Shealy: The characterization of misfit dislocations at 100 heterojunctions in III-V compound semiconductors, Acta Metall. 37, 2779 (1989).

    Google Scholar 

  6. J. Zou and D.J.H. Cockayne: Equilibrium dissociation configuration of misfit dislocations in low strained In0.1Ga0.9As/GaAs single heterostructures, Appl. Phys. Lett. 63, 2222 (1993).

    CAS  Google Scholar 

  7. Y. Chen, N.D. Zakharov, P. Werner, Z. Liliental-Wever, J. Washburn, J.F. Klem and J.Y. Tsao: Dislocation formation mechanism in strained InxGa1-xAs islands grown on GaAs(001) substrates, Appl. Phys. Lett. 62, 1536 (1993).

    CAS  Google Scholar 

  8. R. Hull: Misfit strain and accommodation in SiGe heterostructures, in Semiconductors and Semimetals, 56, (1999).

  9. P.E. Batson: Atomic and electronic structure of a dissociated 60° misfit disloction in Gex Si(1-x), Phys. Rev. Lett. 83, 4409 (1999).

    CAS  Google Scholar 

  10. P.E. Batson: Structural and electronic characterization of a dissociated 60° dislocation in GeSi, Phys. Rev. B 61, 16633 (2000).

    CAS  Google Scholar 

  11. P. Shum Kai, M. Mooney and J.O. Chu: Dislocation-related photoluminescence peak shift due to atomic interdiffusion in SiGe/Si, Appl. Phys. Lett. 71, 1074 (1997).

    Google Scholar 

  12. S. Lopatin, S.J. Pennycook, J. Narayan and G. Duscher: Z-contrast imaging of dislocation cores at the GaAs/Si interface, Appl. Phys. Lett. 81, 2728 (2002).

    CAS  Google Scholar 

  13. W.M. Lomer: A dislocation reaction in the face-centred cubic lattice, Philos. Mag. 42, 1327 (1951).

    CAS  Google Scholar 

  14. A.F. Schwartzman and R. Sinclair: Metastable and equilibrium defect structure of II-IV GaAs interfaces, J. Electron. Mater. 20, 805 (1991).

    CAS  Google Scholar 

  15. J. Narayan and S. Sharan: Mechanism of formation of 60° and 90° misfit dislocations in semiconductor heterostructures, Mater. Sci. Eng. B 10, 261 (1991).

    Google Scholar 

  16. S. Oktyabrsky, H. Wu, R.D. Vispute and J. Narayan: Misfit dislocations in low-temperature grown Ge/Si heterostructures, Philos. Mag. A 71, 537 (1995).

    CAS  Google Scholar 

  17. R. Hull and J.C. Bean: Nucleation of misfit dislocations in strained-layer epitaxy in the Gex Si1-x system, J. Vac. Sci. Technol. A 7, 2580 (1989).

    CAS  Google Scholar 

  18. K.H. Chang, P.K. Bhattacharya and R. Gibala: Characteristics of dislocations at strained heteroepitaxial InGaAs/GaAs interfaces, J. Appl. Phys. 66, 2993 (1989).

    CAS  Google Scholar 

  19. E.P. Kvam, D.M. Maher and C.J. Humphreys: Variation of dislocation morphology with strain in GexSi1-x epilayers on (100), J. Mater. Res. 5, 1900 (1990).

    CAS  Google Scholar 

  20. J. Narayan and S. Oktyabrsky: Formation of misfit dislocations in thin film heterostructures, J. Appl. Phys. 92, 7122 (2002).

    CAS  Google Scholar 

  21. S.J. Pennycook, M.M. McGibbon, A.J. McGibbon, D.E. Jesson and M.F. Chisholm: Direct determination of interface structure and bonding with the scanning transmission electron microscope, Philos. Trans. R. Soc. London A 354, 1719 (1996).

    Google Scholar 

  22. D. Wang, H. Chen, F.J. Li, K. Kawasaki and T. Oikawa: Atomic configuration in core structure of Lomer dislocation in Si0.76Ge0.24/Si, Ultramicroscopy 93, 139 (2002).

    CAS  Google Scholar 

  23. D.B. Aubertine, M.A. Mander, N. Ozguven, A.F. Marshall, P.C. McIntyre, J.O. Chu and P.M. Mooney: Observation and modeling of the initial fast interdiffusion regime in Si/SiGe multilayers, J. Appl. Phys. 92, 5027 (2002).

    CAS  Google Scholar 

  24. J.P. Hirth and J. Lothe: Theory of Dislocations (Wiley, New York, 1982), pp. 91, 117, 319.

    Google Scholar 

  25. I.L.F. Ray and D.J.H. Cockayne: The dissociation of dislocations in silicon, Proc. R. Soc. London A 325, 543 (1971).

    CAS  Google Scholar 

  26. J. Zou and D.J.H. Cockayne: Lomer-Cottrell misfit dislocations in [001] In0.2Ga0.8As/GaAs single heterostructures, App. Phys. Lett. 69, 1083 (1996).

    CAS  Google Scholar 

  27. A.J. Cottrell: The formation of immobile dislocations during slip, Philos. Mag. 43, 645 (1952).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Marshall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marshall, A.F., Aubertine, D.B., Nix, W.D. et al. Misfit dislocation dissociation and Lomer formation in low mismatch SiGe/Si heterostructures. Journal of Materials Research 20, 447–455 (2005). https://doi.org/10.1557/JMR.2005.0065

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2005.0065

Navigation