Skip to main content
Log in

Micron diamond composites with nanocrystalline silicon carbide bonding

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Diamond composites with nanocrystalline cubic silicon carbide bonding were sintered from diamond/amorphous silicon mixtures under high pressure and high temperature (p = 5 GPa and temperatures up to 1673 K). Differential scanning calorimetry, ex situ x-ray, and Raman spectroscopy investigations showed that amorphous silicon partially transformed into nanocrystalline silicon at 873 K under 5 GPa. This was followed by the formation of nanocrystalline silicon carbide from the reaction between the silicon and diamond after silicon melting. Refinement of the x-ray diffraction patterns of composites with the Rietveld method revealed that considerable microstrain (0.3–0.5%) remained within the nanocrystalline silicon carbide grains. Small strain (0.1–0.2%) was observed in the compacted diamonds, but after the reaction they became almost strain free (<0.1%). Enhanced fracture toughness was obtained for hybrid composites compared to liquid-infiltrated composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.N. Tomlinson, N.J. Pipkin, A. Lammer, and R.P. Burnand, Indust. Diamond Rev. 6, 299 (1985).

    Google Scholar 

  2. W. Tillmann, Int. J. Refractory Metal & Hard Mater. 18, 301 (2000).

    Article  CAS  Google Scholar 

  3. I.E. Clark and P.A. Bex, Indust. Diamond Rev. 1, 43 (1999).

    Google Scholar 

  4. X. Jiang and C.P. Klages, Appl. Phys. Lett. 61, 1629 (1992).

    Article  CAS  Google Scholar 

  5. G.A. Voronin, High Pressure Sintering of Diamond-and CBNbased Composite Materials by Infiltration: Main Stages and Regularities, edited by M. Nakahara (International Conference on High Pressure Science and Technology, Kyoto, Japan, 1997), p. 467.

    Google Scholar 

  6. Y.S. Ko, T. Tsurumi, O. Fukunaga, and T. Yano, J. Mater. Sci. 36, 469 (2001).

    Article  CAS  Google Scholar 

  7. A.E. Ringwood, Australia Patent No. 601561 (1988).

  8. S.K. Gordeev, S.G. Zhukov, L.V. Danchukova, and T.C. Ekstrom, Inorg. Mater. 37, 579 (2001).

    Article  CAS  Google Scholar 

  9. A.A. Shulzhenko, V.G. Gargin, A.A. Bochechka, G.S. Oleinik, and N.V. Danilenko, J. Superhard Mater. 22, 1 (2000).

    Google Scholar 

  10. S. Veprek, J. Vac. Sci. Technol. A 17, 2401 (1999).

    Article  CAS  Google Scholar 

  11. R.A. Andrievski, Int. J. Refractory Metal Hard Mater. 19, 447 (2001).

    Article  CAS  Google Scholar 

  12. E.A. Ekimov, A.G. Gavriliuk, B. Palosz, S. Gierlotka, P. Dluzewski, E. Tatianin, Yu. Kluev, A.M. Naletov, and A. Presz, Appl. Phys. Lett. 77, 954 (2000).

    Article  CAS  Google Scholar 

  13. G.A. Voronin, T.W. Zerda, J. Qian, Y. Zhao, D. He, and S.N. Dub (unpublished).

  14. A. Witek, B. Palosz, S. Stelmakh, S. Geirlotka, R. Pielaszek, E. Ekimov, V. Filonenko, A. Gavriliuk, and V. Gryaznov, in High Pressure Materials Research, edited by R.M. Wentzcovich, R.J. Hemley, W.J. Nellis, and P.Y. Yu (Mater. Res. Soc. Symp. Proc. 499, Warrendale, PA, 1998), p. 115.

    Google Scholar 

  15. J. Qian, G. Voronin, T.W. Zerda, D. He, Y. Zhao, J. Mater. Res. 17, 2153 (2002).

    Article  CAS  Google Scholar 

  16. T.D. Shen, C.C. Koch, T.L. McCormick, R.J. Nemanich, J.Y. Huang, J.G. Huang, J. Mater. Res. 10, 139 (1995).

    Article  CAS  Google Scholar 

  17. E.P. Donovan, F. Spaepen, D. Turnbull, J.M. Poate, and D.C. Jacobson, Appl. Phys. Lett. 42, 698 (1983).

    Article  CAS  Google Scholar 

  18. C.J. Howard, J. Appl. Crystallogr. 15, 615 (1982).

    Article  CAS  Google Scholar 

  19. A.C. Larson and R.B. Von Dreele, General Structure Analysis System (GSAS) manual (Los Alamos National Laboratory, NM), pp. 159–166.

  20. T. Ungar and A. Borbely, Nanostruct. Mater. 11, 103 (1999).

    Article  CAS  Google Scholar 

  21. J.H. Kim and J.Y. Lee, J. Appl. Phys. 77, 95 (1995).

    Article  CAS  Google Scholar 

  22. G. Morell, R.S. Katiyar, S.Z. Weisz, and I. Balberg, J. Non-Cryst. Solids 194, 78 (1996).

    Article  CAS  Google Scholar 

  23. D.W. Feldman, J.H. Parker, Jr., W.J. Choyke, and L. Patrick, Phys. Rev. 173, 787 (1968).

    Article  CAS  Google Scholar 

  24. C. Pantea, J. Gubicza, T. Ungar, G. Voronin, and T.W. Zerda, Phys, Rev. B 66, 094106 (2002).

    Article  Google Scholar 

  25. G.A. Voronin, C. Pantea, T.W. Zerda, and K. Ejsmont, J. Appl. Phys. 90, 5933 (2001).

    Article  CAS  Google Scholar 

  26. B. Palosz, S. Gierlotka, S. Stel’makh, R. Pielaszek, P. Zinn, M. Winzenick, U. Bismayer, H. Boysen, J. Alloys Compd. 286, 184 (1999).

    Article  CAS  Google Scholar 

  27. J. Zhang, L. Wang, D.J. Weidner, T. Uchida, J. Xu, Am. Mineral. 87, 1005 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Qian Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qian, J., Zerda, T.W., He, D. et al. Micron diamond composites with nanocrystalline silicon carbide bonding. Journal of Materials Research 18, 1173–1178 (2003). https://doi.org/10.1557/JMR.2003.0161

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2003.0161

Navigation