Skip to main content
Log in

Growth, microstructure, charge transport, and transparency of random polycrystalline and heteroepitaxial metalorganic chemical vapor deposition-derived gallium-indium-oxide thin films

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Gallium–indium–oxide films (GaxIn2⊟xO3), where x = 0.0–1.1, were grown by low-pressure metalorganic chemical vapor deposition using the volatile metalorganic precursors In(dpm)3 and Ga(dpm)3 (dpm = 2,2,6,6-tetramethyl-3,5-heptanedionato). The films were smooth (root mean square roughness = 50–65 Å) with a homogeneously Ga-substituted, cubic In2O3 microstructure, randomly oriented on quartz or heteroepitaxial on (100) yttria-stabilized zirconia single-crystal substrates. The highest conductivity of the as-grown films was found at x = 0.12, with σ = 700 S/cm [n-type; carrier density = 8.1 × 1019 cm⊟3; mobility = 55.2 cm2/(V s); dσ/dT<0]. The optical transmission window of such films is considerably broader than that of Sn-doped In2O3, and the absolute transparency rival or exceeds that of the most transparent conductive oxides known. Reductive annealing, carried out at 400–425 C° in a flowing gas mixture of H2 (4%) and N2, resulted in increased conductivity (σ 1400 S/cm; n-type), carrier density (1.4 × 1020 cm⊟3), and mobility as high as 64.6 cm2/(V s), with little loss in optical transparency. No significant difference in carrier mobility or conductivity is observed between randomly oriented and heteroepitaxial films, arguing in combination with other data that carrier scattering effects at high-angle grain/domain boundaries play a minor role in the conductivity mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.S. Ginley and C. Bright, Eds., MRS Bull. 25, 15 (2000) and articles therein.

    Article  CAS  Google Scholar 

  2. C.G. Granqvist, Appl. Phys. A 52, 83 (1991).

    Article  Google Scholar 

  3. Z.M. Jarzebski, Phys. Status Solidi A 71, 13 (1982).

    Article  CAS  Google Scholar 

  4. R. Wang, A.W. Sleight, R. Platzer, and J.A. Gardner, J. Solid State Chem. 122, 166 (1996).

    Article  CAS  Google Scholar 

  5. R. Wang, L.H. King, and A.W. Sleight, J. Mater. Res. 11, 1659(1996).

    Article  CAS  Google Scholar 

  6. T. Minami, T. Kakumu, and S. Takata, J. Vac. Sci. Technol., A 14, 1704 (1996).

    Article  CAS  Google Scholar 

  7. T. Minami, T. Kakumu, K. Shimokawa, and S. Takata, Thin Solid Films 317, 318 (1998).

    Article  CAS  Google Scholar 

  8. T. Omata, N. Ueda, N. Hikuma, K. Ueda, H. Mizoguchi, T. Hashimoto, and H. Kawazoe, Appl. Phys. Lett. 62, 499 (1993).

    Article  CAS  Google Scholar 

  9. G.B. Palmer, K.R. Poeppelmeier, and T.O. Mason, Chem. Mater. 9, 3121 (1997).

    Article  CAS  Google Scholar 

  10. D.D. Edwards, T.O. Mason, W. Sinkler, L.D. Marks, K.R. Poeppelmeier, Z. Hu, and J.D. Jorgensen, J. Solid State Chem. 150, 294 (2000).

    Article  CAS  Google Scholar 

  11. D.D. Edwards and T.O. Mason, J. Am. Ceram. Soc. 81, 3285 (1998).

    Article  CAS  Google Scholar 

  12. D.D. Edwards, T.O. Mason, W. Sinkler, L.D. Marks, F. Goutenoire, and K.R. Poeppelmeier, J. Solid State Chem. 140, 242 (1998).

    Article  CAS  Google Scholar 

  13. D.D. Edwards, T.O. Mason, F. Goutenoire, and K.R. Poeppelmeier, Appl. Phys. Lett. 70, 1706 (1997).

    Article  CAS  Google Scholar 

  14. D.D. Edwards, P.E. Folkins, and T.O. Mason, J. Am. Ceram. Soc. 80, 253 (1997).

    Article  CAS  Google Scholar 

  15. J.M. Phillips, R.J. Cava, G.A. Thomas, S.A. Carter, J. Kwo, T. Siegrist, J.J. Krajewski, J.H. Marshall, W.F. Peck Jr., and D.H. Rapkine, Appl. Phys. Lett. 67, 2246 (1995).

    Article  CAS  Google Scholar 

  16. J.M. Phillips, J. Kwo, G.A. Thomas, S.A. Carter, R.J. Cava, S.Y. Huo, J.J. Krajewski Jr., J.H. Marshall, W.F. Peck, D.H. Rapkine, and R.B. van Dover, Appl. Phys. Lett. 65, 115 (1994).

    Article  CAS  Google Scholar 

  17. R.J. Cava, J.M. Phillips, J. Kwo, G.A. Thomas, S.A. Carter, J.J. Krajewski, W.F. Peck Jr., J.H. Marshall, and D.H. Rapkine, Appl. Phys. Lett. 64, 2071 (1994).

    Article  CAS  Google Scholar 

  18. T. Minami, S. Takata, and T.J. Kakumu, J. Vac. Sci. Technol., A 14, 1689 (1996).

    Article  CAS  Google Scholar 

  19. T. Minami, Y. Takeda, T. Kakumu, S. Takata, and I. Fukuda, J. Vac. Sci. Technol., A 15, 958 (1997).

    Article  CAS  Google Scholar 

  20. R.G. Gordon, MRS Bull. 25, 52 (2000).

    Article  CAS  Google Scholar 

  21. R.L. Weiher, J. Appl. Phys. 33, 2834 (1962).

    Article  CAS  Google Scholar 

  22. R. Groth, Phys. Status Solidi 14, 69 (1966).

    Article  CAS  Google Scholar 

  23. M. Kamei, T. Yagami, S. Takaki, and Y. Shigesato, Appl. Phys. Lett. 64, 2712 (1994).

    Article  CAS  Google Scholar 

  24. E.J. Tarsa, J.H. English, and J.S. Speck, Appl. Phys. Lett. 62, 2332 (1993).

    Article  CAS  Google Scholar 

  25. M. Kamei, Y. Shigesato, I. Yasui, N. Taga, and S. Takaki, J. NonCryst. Solids 218, 267 (1997).

    Article  CAS  Google Scholar 

  26. N. Taga, H. Odaka, Y. Shigesato, I. Yasui, M. Kamei, and T.E. Haynes, J. Appl. Phys. 80, 978 (1996).

    Article  CAS  Google Scholar 

  27. H.S. Kwok, X.W. Sun, and D.H. Kim, Thin Solid Films 335, 299 (1998).

    Article  CAS  Google Scholar 

  28. H. Ohta, M. Orita, M. Hirano, H. Tanji, H. Kawazoe, and H. Hosono, Appl. Phys. Lett. 76, 2740 (2000).

    Article  CAS  Google Scholar 

  29. M. Yan, M. Lane, C.R. Kannewurf, and R.P.H. Chang, Appl. Phys. Lett. 78, 2342 (2001).

    Article  CAS  Google Scholar 

  30. D.L. Schulz and T.J. Marks, in CVD of Non-Metals, edited by W.S. Rees Jr., (VCH Publishers, New York, 1996), pp. 39–150.

    Google Scholar 

  31. A. Wang, J.Y. Dai, J.Z. Cheng, M.P. Chudzik, T.J. Marks, R.P.H. Chang, and C.R. Kannewurf, Appl. Phys. Lett. 73, 327 (1998).

    Article  CAS  Google Scholar 

  32. A. Wang, J.R. Babcock, N.L. Edleman, A.W. Metz, M.A. Lane, R. Asahi, V.P. Dravid, C.R. Kannewurf, A.J. Freeman, and T.J. Marks, Proc. Nat. Acad. Sci. U.S.A. 98, 7113 (2001).

    Google Scholar 

  33. Reported in part: A. Wang, N.L. Edleman, J.R. Babcock, T.J. Marks, M.A. Lane, P.W. Brazis, and C.R. Kannewurf, in Infrared Applications of Semiconductors III, edited by B.J.H. Stadler, M.O. Manasreh, I. Ferguson, and Y-H. Zhang (Mater. Res. Soc. Symp. Proc. 607, Warrendale, PA, 2000), p. 345.

    Google Scholar 

  34. A. Wang, S.C. Cheng, J.A. Belot, R.J. McNeely, J. Cheng, B. Marcordes, and T.J. Marks, in Chemical Aspects of Electronic Ceramics Processing, edited by P.N. Kumta, A.F. Hepp, D.B. Beach, B. Arkles, and J.J. Sullivan (Mater. Res. Soc. Symp. Proc. 495, Warrendale, PA, 1998), p. 3.

    Google Scholar 

  35. R.B.H. Tahar, T. Ban, Y. Ohya, and Y.J. Takahashi, Appl. Phys. 83, 2631 (1998).

    Article  Google Scholar 

  36. T.O. Mason, G.B. Gonzalez, D.R. Kammler, N. Mansourian-Hadavi, and B.J. Ingram, Thin Solid Films 411, 106 (2002).

    Article  CAS  Google Scholar 

  37. L.A. Ryabova, V.S. Salun, and L.A. Serbinov, Thin Solid Films 92, 327 (1982).

    Article  CAS  Google Scholar 

  38. E. Burstein, Phys. Rev. 93, 632 (1954).

    Article  CAS  Google Scholar 

  39. K.L. Chopra, S. Major, and D.K. Pandya, Thin Solid Films 102, 1 (1983).

    Article  CAS  Google Scholar 

  40. M. Marezio, Acta Crystallogr. 20, 723 (1966).

    Article  CAS  Google Scholar 

  41. J. Cui, A. Wang, N.L. Edleman, J. Ni, P. Lee, N.R. Armstrong, and T.J. Marks, Adv. Mater. 13, 1476 (2001).

    Article  CAS  Google Scholar 

  42. D.J. Milliron, I.G. Hill, C. Shen, A. Kahn, and J. Schwartz, J. Appl. Phys. 87, 572 (2000).

    Article  CAS  Google Scholar 

  43. H. Ishii, K. Sugiyama, E. Ito, and K. Seti, Adv. Mater. 11, 605 (1999).

    Article  CAS  Google Scholar 

  44. R.B.H. Tahar, T. Ban, Y. Ohya, and Y.J. Takahashi, Appl. Phys. 82, 865 (1997).

    Article  Google Scholar 

  45. D.H. Zhang and H.L. Ma, Appl. Phys. A 62, 487 (1996).

    Article  Google Scholar 

  46. Y. Shigesato and D.C. Paine, Appl. Phys. Lett. 62, 1268 (1993).

    Article  CAS  Google Scholar 

  47. A. Wang, N.L. Edleman, J.R. Babcock, T.J. Marks, M.A. Lane, P.W. Brazis, and C.R. Kannewurf (manuscript in preparation).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobin J. Marks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, A., Edleman, N.L., Babcock, J.R. et al. Growth, microstructure, charge transport, and transparency of random polycrystalline and heteroepitaxial metalorganic chemical vapor deposition-derived gallium-indium-oxide thin films. Journal of Materials Research 17, 3155–3162 (2002). https://doi.org/10.1557/JMR.2002.0456

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2002.0456

Navigation