Skip to main content
Log in

On temperature dependence of deformation mechanism and the brittle–ductile transition in semiconductors

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Recent deformation experiments on semiconductors have shown the occurrence of a break in the variation of the critical resolved shear stress of the crystal as a function of temperature. These and many other examples in the literature evidence a critical temperature at which a transition occurs in the deformation mechanism of the crystal. In this paper, the occurrence of a similar transition in two polytypes of SiC is reported and correlated to the microstructure of the deformed crystals investigated by transmission electron microscopy, which shows evidence for partial dislocations carrying the deformation at high stresses and low temperatures. Based on these results and data in the literature, the explanation is generalized to other semiconductors and a possible relationship to their brittle–ductile transition is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Alexander and P. Haasen, in Solid State Physics, edited by F. Seitz, D. Turnbull, and H. Ehrenreich (Academic Press, New York and London, 1968), Vol. 22, p. 27.

  2. H. Alexander, in Dislocations in Solids, edited by F.R.N. Nabarro (Elsevier Science Publishers B., Amsterdam, 1986), Vol. 7, p. 114.

  3. A. George and J. Rabier, Rev. Phys. Appl. 22, 941 (1987).

    Article  CAS  Google Scholar 

  4. J. Rabier and A. George, Rev. Phys. Appl. 22, 1327 (1987).

    Article  CAS  Google Scholar 

  5. J.P. Hirth and J. Lothe, Theory of Dislocations, (McGraw-Hill, New York, 1968).

  6. C.St. John, Phil. Mag. 32, 1193 (1975).

    Article  Google Scholar 

  7. M. Brede and P. Haasen, Acta Metall. 36, 2003 (1988).

    Article  CAS  Google Scholar 

  8. J. Samuels and S.G. Roberts, Proc. R. Soc. Lond. A 421, 1 (1989).

    Article  CAS  Google Scholar 

  9. P.B. Hirsch, S.G. Roberts, and J. Samuels, Proc. R. Soc. Lond. A 421, 25 (1989).

    Article  CAS  Google Scholar 

  10. P.B. Hirsch and S.G. Roberts, Phil. Mag. A 64, 55 (1991).

    Article  CAS  Google Scholar 

  11. J.F. Knott, Fundamental of Fracture Mechanics, (Butterworths, London, 1979).

  12. A. George, Solid State Phenomena 59–60, 251 (1998).

    Article  Google Scholar 

  13. A.S. Argon, Acta Metall. 35, 185 (1987).

    Article  Google Scholar 

  14. B. Escaig, in Dislocation Dynamics, edited by A.R. Rosenfield, G.T. Hahn, A.L. Bement, Jr., and R.I. Jaffee (MacGraw-Hill London, 1968), p. 655.

  15. B. Escaig, J. Physique 29, 225 (1968).

    Article  CAS  Google Scholar 

  16. T. Suzuki, H. Koizumi, and H.O.K. Kirchner, Phil. Mag. A 71, 389 (1995).

    Article  CAS  Google Scholar 

  17. T. Suzuki, I. Yonenaga, and H.O.K. Kirchner, Phys. Rev. Lett. 75, 3470 (1995).

    Article  CAS  Google Scholar 

  18. H.O.K. Kirchner and T. Suzuki, Acta Mater. 46, 305 (1997).

    Article  Google Scholar 

  19. T. Suzuki, T. Nishisako, T. Taru, and T. Yasutomi, Phil. Mag. Lett. 77, 173 (1998).

    Article  CAS  Google Scholar 

  20. P. Gall, J.P. Peyrade, R. Coquillé, F. Reynaud, S. Gabillet, and A. Albacette, Acta Metall. 35, 143 (1987).

    Article  CAS  Google Scholar 

  21. T. Suzuki, T. Yasutomi, T. Tokuoka, and I. Yonenaga, Phil. Mag. A In press (1998).

  22. T. Suzuki, T. Yasutomi, T. Tokuoka, and I. Yonenaga, Phys. Stat. Sol. (a) 171, 47 (1999).

    Article  Google Scholar 

  23. A.V. Samant, Ph.D. Thesis, Case Western Reserve University (1999).

  24. A.V. Samant, W.L. Zhou, and P. Pirouz, Phys. Stat. Sol. (a) 166, 155 (1998).

    Article  Google Scholar 

  25. A.V. Samant, M. Hong, and P. Pirouz (1998, unpublished).

  26. J. Castaing, P. Veyssie`re, L.P. Kubin, and J. Rabier, Phil. Mag. A 44, 1407 (1981).

    Article  CAS  Google Scholar 

  27. J.F. Demenet, Etude du Silicium a Basse et Moyenne Temperature Sous Forte Contrainte. The`se d’etat, Université de Poitiers (UFR Sciences fondamentales et appliquees), No. 457 (1987).

  28. P. Boivin, J. Rabier, and H. Garem, Phil. Mag. A 61, 647 (1990).

    Article  CAS  Google Scholar 

  29. E. Kaxiras and M.S. Duesbery, Phys. Rev. Lett. 70, 3752 (1993).

    Article  CAS  Google Scholar 

  30. B. Joós, Q. Ren, and M.S. Duesbery, Phys. Rev. B 50, 5890 (1994).

    Article  Google Scholar 

  31. Q. Ren, B. Joós, and M.S. Duesbery, Phys. Rev. B 52, 13223 (1995).

    Article  CAS  Google Scholar 

  32. M.S. Duesbery and B. Joós, Phil. Mag. Lett. 74, 253 (1996).

    Article  CAS  Google Scholar 

  33. H. Gottschalk, G. Patzer, and H. Alexander, Phys. Stat. Sol. (a) 45, 207 (1978).

    Article  Google Scholar 

  34. S. Takeuchi, K. Suzuki, K. Maeda, and H. Iwanaga, Phil. Mag. A 50, 171 (1984).

    Article  CAS  Google Scholar 

  35. S. Takeuchi and K. Suzuki, Phys. Stat. Sol. (a) 171, 99 (1999).

    Article  Google Scholar 

  36. H-J. Möller, Acta. Met. 26, 963 (1978).

    Article  Google Scholar 

  37. F. Louchet and J. Thibault-Desseaux, Rev. Phys. Appl. 22, 207 (1987).

    Article  CAS  Google Scholar 

  38. P. Pirouz and X.J. Ning, in Proceedings of Microscopy of Semiconducting Materials, edited by A.G. Cullis and A. Staton-Bevan (Inst. Phys. Conf. Ser. No. 146, Bristol, England, 1995), p. 69.

  39. K. Wessel and H. Alexander, Phil. Mag. 35, 1523 (1977).

    Article  CAS  Google Scholar 

  40. J. Rabier and P. Boivin, Phil. Mag. A 61, 673 (1990).

    Article  CAS  Google Scholar 

  41. P. Pirouz and P.M. Hazzledine, Scripta Metall. Mater. 25, 1167 (1991).

    Article  Google Scholar 

  42. P. Pirouz, in Twinning in Advanced Materials, edited by M.H. Yoo and M. Wuttig (The Minerals, Metals, and Materials Society, Pittsburgh, PA, 1994), p. 275.

  43. S. Branchu, H. Garem, J. Rabier, and J.L. Demenet, Phys. Stat. Sol. (a) 167, 89 (1998).

    Article  Google Scholar 

  44. P. Grosbras, J.L. Demenet, H. Garem, and J.C. Desoyer, Phys. Stat. Sol. (a) 84, 481 (1984).

    Article  Google Scholar 

  45. J.L. Demenet, J. Rabier, and H. Garem, in Proceedings of Microscopy of Semiconducting Materials, edited by A.G. Cullis and P.D. Augustus (Inst. Phys. Conf. Ser. No. 87, Bristol, England, 1987), p. 355.

  46. J.L. Dement, P. Grosbras, H. Garem, and J.C. Desoyer, Phil. Mag. A 59, 501 (1989).

    Article  Google Scholar 

  47. H. Alexander, P. Haasen, R. Labusch, and W. Schröter, J. Phys. (Paris) 40, Colloque C6 (1979).

  48. P. Pirouz, Scripta Metall. 23, 401 (1989).

    Article  CAS  Google Scholar 

  49. P. Pirouz, in Proceedings of Microscopy of Semiconducting Materials, edited by S.G. Roberts, D.B. Holt, and P.R. Wilshaw (Inst. Phys. Conf. Ser. No. 104, Bristol, England, 1989), p. 49.

  50. P. Pirouz, Scripta Metall. 21, 1463 (1987).

    Article  CAS  Google Scholar 

  51. X.J. Ning, T. Perez, P. Pirouz, Phil. Mag. A 72, 837 (1995).

    Article  CAS  Google Scholar 

  52. X.J. Ning, N. Huvey, and P. Pirouz, J. Am. Ceram. Soc. 80, 1645 (1997).

    Article  CAS  Google Scholar 

  53. G. Schöck, Phil. Mag. A 63, 111 (1991).

    Article  Google Scholar 

  54. G. Schöck and W. Püschl, Phil. Mag. A 64, 931 (1991).

    Article  Google Scholar 

  55. J.R. Rice, J. Mech. Phys. Solids 40, 239 (1992).

    Article  CAS  Google Scholar 

  56. J.R. Rice and G.E. Beltz, J. Mech. Phys. Sol. 42, 333 (1994).

    Article  CAS  Google Scholar 

  57. G. Xu, A.S. Argon, and M. Ortiz, Phil. Mag. A 72, 415 (1995).

    Article  CAS  Google Scholar 

  58. G. Xu, A.S. Argon, and M. Ortiz, Phi. Mag. A 75, 341 (1997).

    Article  CAS  Google Scholar 

  59. J. Grilhé, Europhys. Lett. 23, 141 (1993).

    Article  Google Scholar 

  60. N. Junqua and J. Grilhé, Phil. Mag. Lett. 75, 125 (1997).

    Article  CAS  Google Scholar 

  61. S. Brochard, N. Junqua, and J. Grilhé, Phil. Mag. A 77, 911 (1998).

    Article  CAS  Google Scholar 

  62. S. Brochard, J. Rabier, and J. Grilhé, Eur. Phys. J. 75, 99 (1998).

    Google Scholar 

  63. A. Kelly, W.R. Tyson, and A.H. Cottrell, Phil. Mag. 15, 567 (1967).

    Article  CAS  Google Scholar 

  64. J.R. Rice and R. Thomson, Phil. Mag. 29, 73 (1974).

    Article  CAS  Google Scholar 

  65. R. Thomson, in Solid State Physics, edited by H. Ehrenreich and D. Turnbull (Academic Press, New York, 1986), Vol. 39, p. 1.

  66. Y.-H. Chiao and D.R. Clarke, Acta Metall. 37, 203 (1989).

    Article  CAS  Google Scholar 

  67. F.C. Serbena and S.G. Roberts, Acta. Metall. Mater. 42, 2505 (1994).

    Article  CAS  Google Scholar 

  68. K. Maeda and S. Fujita, in Lattice Defects in Ceamics, edited by S. Takeuchi and T. Suzuki (Jap. J. Appl. Phys. Series 2, Tokyo, 1989), p. 25.

  69. A. Moulin, Etude de la Plasticité du Silicium a` une Echelle Mésoscopique par Simulation Numérique Tridimensionnelle, The`se de doctorate, Ecole Centrale de Paris, (1997).

  70. A. Moulin, M. Condat, and L.P. Kubin, Acta. Mater. 45, 2339 (1997).

    Article  CAS  Google Scholar 

  71. A. Moulin, M. Condat, and L.P. Kubin, Phil. Mag., in press (1998).

  72. K. Yasutake, S. Shimizu, M. Umeno, and H. Kawabe, J. Appl. Phys. 61, 940 (1987).

    Article  CAS  Google Scholar 

  73. P.D. Warren, Scripta Metall. 23, 637 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Pirouz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pirouz, P., Samant, A.V., Hong, M.H. et al. On temperature dependence of deformation mechanism and the brittle–ductile transition in semiconductors. Journal of Materials Research 14, 2783–2793 (1999). https://doi.org/10.1557/JMR.1999.0372

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1999.0372

Navigation