Skip to main content
Log in

Phase transition energetics and thermodynamic properties of ferroelectric PbTiO3

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The ferroelectric phase transition in polycrystalline PbTiO3 was investigated using differential scanning calorimetry and high-resolution x-ray diffraction. The specimen studied was a highly crystalline powder sample carefully prepared by the solution-gelation synthesis technique. The behavior of the excess specific heat, excess enthalpy, excess entropy, and spontaneous tetragonal deformation near the Pm3mP4mm transition was examined. The thermal evolution of the thermodynamic order parameter as obtained from the specific heat measurements was compared to that determined from the behavior of the spontaneous elastic strain. The coefficients of the relevant Landau potential for lead titanate were deduced from these data. The results provided additional information regarding the basic thermodynamic properties of lead titanate and confirmed that a simply formulated Landau-Devonshire polynomial, having temperature independent higher-order dielectric stiffness coefficients, affords a satisfactory and self-consistent description of the single-domain ferroelectric behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Jaffe, W. J. Cook, and H. Jaffe, Piezoelectric Ceramics (Academic, London, 1971), p. 115.

    Google Scholar 

  2. D. Damjanovic, T. R. Gururaja, S. J. Jang, and L. E. Cross, Mater. Lett. 4, 414 (1986).

    Article  CAS  Google Scholar 

  3. A. M. Glazer and S. A. Mabud, Acta Crystallogr. B34, 1065 (1978).

    Article  CAS  Google Scholar 

  4. J. P. Remeika and A. M. Glass, Mater. Res. Bull. 5, 37 (1970).

    Article  CAS  Google Scholar 

  5. G. Burns and B. A. Scott, Phys. Rev. Lett. 25, 1191 (1970).

    Article  CAS  Google Scholar 

  6. M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1977), p. 248.

    Google Scholar 

  7. R. J. Nelmes, R. O. Piltz, W. F. Kuhs, Z. Tun, and R. Restori, Ferroelectrics 108, 165 (1990).

    Article  CAS  Google Scholar 

  8. S. A. Mabud and A. M. Glazer, J. Appl. Cryst. 12, 49 (1979).

    Article  CAS  Google Scholar 

  9. G. Shirane, R. Pepinsky, and B. C. Frazer, Acta Crystallogr. 9, 13 (1956).

    Article  Google Scholar 

  10. S. C. Abrahams, S. K. Kurtz, and P. B. Jamieson, Phys. Rev. 172, 551 (1968).

    Article  CAS  Google Scholar 

  11. V. G. Gavrilyachenko, R. I. Spinko, M. A. Martynenko, and E. G. Fesenko, Sov. Phys.-Solid State 12, 1203 (1970).

    Google Scholar 

  12. K. Wojcik, Ferroelectrics 99, 5 (1989).

    Article  CAS  Google Scholar 

  13. G. A. Samara, Ferroelectrics 2, 277 (1972).

    Article  Google Scholar 

  14. V. G. Bhide, K. G. Deshmukh, and M. S. Hegde, Physica 28, 871 (1962).

    Article  CAS  Google Scholar 

  15. G. Shirane and S. Hoshino, J. Phys. Soc. Jpn. 6, 265 (1951).

    Article  CAS  Google Scholar 

  16. V. G. Bhide, M. S. Hegde, and K. G. Deshmukh, J. Am. Ceram. Soc. 51, 566 (1968).

    Article  Google Scholar 

  17. S. Shirasaki, Solid State Commun. 9, 1217 (1971).

    Article  CAS  Google Scholar 

  18. A. Amin, L. E. Cross, and R. E. Newnham, Ferroelectrics 37, 647 (1981).

    Article  CAS  Google Scholar 

  19. A. Amin, M. J. Haun, B. Badger, H. McKinstry, and L. E. Cross, Ferroelectrics 65, 107 (1985).

    Article  CAS  Google Scholar 

  20. M. J. Haun, E. Furman, S. J. Jang, H. A. McKinstry, and L. E. Cross, J. Appl. Phys. 62, 3331 (1987).

    Article  CAS  Google Scholar 

  21. G. A. Rossetti, Jr., K. R. Udayakumar, M. J. Haun, and L. E. Cross, J. Am. Ceram. Soc. 73, 3334 (1990).

    Article  CAS  Google Scholar 

  22. G. A. Rossetti, Jr., L. E. Cross, and K. Kushida, Appl. Phys. Lett. 59, 2524 (1991).

    Article  CAS  Google Scholar 

  23. A. F. Devonshire, Adv. Phys. 3, 85 (1954).

    Article  Google Scholar 

  24. T. W. Dekleva, J. M. Hayes, L. E. Cross, and G. L. Geoffroy, J. Am. Ceram. Soc. 71, C280 (1988).

    Article  CAS  Google Scholar 

  25. J. B. Blum and S. R. Gurkovich, J. Mater. Sci. 20, 4479 (1985).

    Article  CAS  Google Scholar 

  26. S. D. Rasberry, Certificate of Analysis, SRM 660, National Institute of Standards and Technology, Gaithersburg, Maryland (1989).

    Google Scholar 

  27. D. A. Ditmars and T. B. Douglas, J. Res. Natl. Bur. Stand. 75A, 401 (1971).

    Article  Google Scholar 

  28. P. Richet, Y. Bottinga, L. Denielou, J. P. Petitet, and C. Tequi, Geochim. Cosmochim. Acta 46, 2639 (1982).

    Article  CAS  Google Scholar 

  29. A. Amin, L. E. Cross, and R. E. Newnham, Mater. Res. Bull. 15, 721 (1980).

    Article  CAS  Google Scholar 

  30. T. Ikeda, Solid State Commun. 16, 103 (1975).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rossetti, G.A., Cline, J.P. & Navrotsky, A. Phase transition energetics and thermodynamic properties of ferroelectric PbTiO3. Journal of Materials Research 13, 3197–3206 (1998). https://doi.org/10.1557/JMR.1998.0434

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1998.0434

Navigation