Skip to main content
Log in

Nanocrystalline BaTiO3 from freeze-dried nitrate solutions

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

An aqueous, all nitrate, solution-based preparation of BaTiO3 is reported here. Rapid freezing of a barium and titanyl nitrate solution, followed by low temperature sublimitation of the solvent, yielded a freeze-dried nitrate precursor which was thermally processed to produce BaTiO3. XRD revealed that 10 min at temperatures ≧600 °C resulted in the formation of phase pure nanocrystalline BaTiO3. TEM revealed that the material was uniform and nanocrystalline (10–15 nm). The high surface to volume ratio inherent in these small particles stabilized the cubic phase of BaTiO3 at room temperature. It was also found that the average particle size of the BaTiO3 produced was highly dependent upon calcination temperature and only slightly dependent upon annealing time. This result suggests a means of selection of particle size of the product through judicious choice of calcination temperature. The experimental details of the freeze-dried precursor preparation, thermal processing of the precursor, product formation, and product morphology are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Kiss, J. Magder, M. S. Vukasovich, and R. J. Lockhart, J. Am. Ceram. Soc. 49, 291 (1966).

    Article  CAS  Google Scholar 

  2. M. Stockenhuber, H. Mayer, and J. A. Lercher, J. Am. Ceram. Soc. 76, 1185 (1993).

    Article  CAS  Google Scholar 

  3. M. P. Pechini, U.S. Patent No. 3330 697, July 11, 1967.

  4. K. S. Mazdiyasni, R. T. Dolloff, and J. S. Smith II, J. Am. Ceram. Soc. 52, 523 (1969).

    Article  CAS  Google Scholar 

  5. G. Pfaff, J. Mater. Chem. 2, 591 (1992).

    Article  CAS  Google Scholar 

  6. C. Zhixiong, Z. Fangqiao, L. Meidong, W. Guoan, and P. Xiang-sheng, Ferroelectrics 123, 61 (1991).

    Article  Google Scholar 

  7. S. S. Flachen, J. Am. Chem. Soc. 77, 6194 (1955).

    Article  Google Scholar 

  8. W. Hertl, J. Am. Ceram. Soc. 71, 879 (1988).

    Article  CAS  Google Scholar 

  9. P. P. Phule and S. H. Risbud, J. Mater. Sci. 25, 1169 (1990).

    Article  CAS  Google Scholar 

  10. M. Alvazzi Delfrate, M. Leoni, L. Nanni, E. Melioli, B. E. Watts, and F. Leccabue, J. Mater. Sci., Mater. Elec. 5, 153 (1994).

    Article  CAS  Google Scholar 

  11. H. G. Lee and H. G. Kim, J. Appl. Phys. 67, 2024 (1990).

    Article  CAS  Google Scholar 

  12. K. S. Mazdiyasni, R. T. Dolloff, and J. S. Smith II, J. Am. Ceram. Soc. 52, 523 (1969).

    Article  CAS  Google Scholar 

  13. J. F. Schnettler, F. R. Monforte, and W. W. Rhodes, in Science of Ceramics, edited by G. H. Stewart (British Ceramics Society, Manchester, 1968).

    Google Scholar 

  14. A. C. C. Tseung and H. L. Bevan, J. Mater. Sci. 5, 604 (1970).

    Article  CAS  Google Scholar 

  15. J. Barksdale, Titanium, Its Occurrence, Chemistry, and Technology (Ronald Press, New York, 1966).

    Google Scholar 

  16. H. B. Weiser, Inorganic Colloid Chemistry, Volume II, The Hydrous Oxides and Hydroxides (John Wiley and Sons, London, 1935).

    Google Scholar 

  17. A. W. Hixson and W. W. Plechner, Ind. Eng. Chem. 25, 262 (1933).

    Article  CAS  Google Scholar 

  18. H. Yamamura, A. Watanabe, S. Shirasaki, Y. Moriyoshi, and M. Tanada, Ceram. Int. 11, 17 (1985).

    Article  CAS  Google Scholar 

  19. D. M. DeLeeuw, C. A. H. A. Mutsaers, C. Langereis, H. C. A. Smoorenberg, and P. J. Rommers, Physica C 152, 39 (1988).

    Article  CAS  Google Scholar 

  20. E. Ruckenstein, S. Narain, and N. L. Wu, J. Mater. Res. 4, 267 (1989).

    Article  CAS  Google Scholar 

  21. T. M. Shaw, D. Dinos, P. E. Batson, A. G. Shrott, D. R. Clarke, and P. R. Duncombe, J. Mater. Res. 5, 1176 (1990).

    Article  CAS  Google Scholar 

  22. J. M. McHale and N. V. Coppa, unpublished work.

  23. N. V. Coppa, Doctoral Dissertation, Temple University, Philadelphia, PA (1990).

  24. T. M. Ozra, J. C. Jha, and E. I. Ezekiel, J. Indian Chem. Soc. 45, 420 (1968).

    Google Scholar 

  25. N. V. Coppa, G. H. Myer, R. E. Salomon, A. Bura, J. W. O’Reilley, J. E. Crow, and P. K. Davies, J. Mater. Res. 7, 2017 (1992).

    Article  CAS  Google Scholar 

  26. E. L. Brosha, E. Sanchez, P. K. Davies, N. V. Coppa, A. Thomas, and R. E. Salomon, Physica C 184, 353 (1991).

    Article  CAS  Google Scholar 

  27. CRC Handbook of Physics and Chemistry, 56th ed., edited by R. C. Weast (CRC Press, Cleveland, OH, 1976).

  28. L. K. Templeton and J. A. Pask, J. Am. Ceram. Soc. 42, 212 (1959).

    Article  CAS  Google Scholar 

  29. As prepared in Ref. 22.

  30. T. Takemuchi, K. Ado, T. Asai, H. Kageyama, Y. Saito, C. Masqueleir, and O. Nakamura, J. Am. Ceram. Soc. 77, 1665 (1994).

    Article  Google Scholar 

  31. The possible ternary impurity, Ba2TiO4, is reported to have a d-spacing of 3.54 Å.

  32. S. Andersson and L. Jahnberg, Ark. Kemi 21, 413 (1964).

    Google Scholar 

  33. H. F. Kay and P. Vousdan, Philos. Mag. 7, 1019 (1949).

    Article  Google Scholar 

  34. B. D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley, Reading, MA, 1978).

    Google Scholar 

  35. S. Naka, F. Nakakita, Y. Suwa, and M. Inagaki, Bull. Chem. Soc. Jpn. 47, 1168 (1974).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McHale, J.M., McIntyre, P.C., Sickafus, K.E. et al. Nanocrystalline BaTiO3 from freeze-dried nitrate solutions. Journal of Materials Research 11, 1199–1209 (1996). https://doi.org/10.1557/JMR.1996.0154

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1996.0154

Navigation