Skip to main content
Log in

A large angle convergent beam electron diffraction study of the core nature of dislocations in 3C-SiC

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Dislocations produced by 1300 °C indentation of the silicon-terminated (111) face of 3C-SiC were investigated by transmission electron microscopy. They were all found to be either widely separated partial dislocation pairs, or else, arrays of single partial dislocation half-loops on neighboring parallel slip planes and having the same Burgers vector. It was concluded that in the latter case, each array consisted of leading partial dislocations which had nucleated without accompanying trailing partial dislocations. The core nature of both dissociated dislocations and arrays of single partial dislocations has been determined by the technique of large angle convergent beam electron diffraction. The results indicate that the core of all single partial dislocation half-loops constituting an array consists of silicon atoms. It is concluded that, with the present deformation geometry, the Si-core partial dislocations are preferentially nucleated before the C-core partial dislocations. In the case of a dissociated dislocation, when a pair of partials was present, electron microscopy observations revealed that the morphology of the two partial dislocations was very different; while the Si-core partials were smooth, the C-core partial dislocations had a zig-zag morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Pirouz and J. W. Yang, Ultramicroscopy 51, 189–214 (1993).

    Article  CAS  Google Scholar 

  2. L. S. Ramsdell, Am. Mineral. 32, 64–82 (1947).

    CAS  Google Scholar 

  3. S. Amelinckx, G. Strumane, and W. W. Webb, J. Appl. Phys. 31, 1359–1370 (1960).

    Article  CAS  Google Scholar 

  4. R. Stevens, J. Mater. Sci. 5, 474–477 (1970).

    Article  CAS  Google Scholar 

  5. R. Stevens, J. Mater. Sci. 7, 517–521 (1972).

    Article  CAS  Google Scholar 

  6. A. N. Pilyankevich, V. F. Britun, and V. A. Kravets, Sov. Phys. Solid State 24, 862–863 (1982).

    Google Scholar 

  7. A. N. Pilyankevich and V. F. Britun, Phys. Status Solidi A 82, 449–457 (1984).

    Article  CAS  Google Scholar 

  8. K. Maeda, K. Suzuki, S. Fujita, M. Ichihara, and S. Hyodo, Philos. Mag. A 57, 573–592 (1988).

    Article  CAS  Google Scholar 

  9. J. W. Yang, Ph.D. Thesis, Case Western Reserve University (1993).

  10. P. Pirouz, in Twinning in Advanced Materials, edited by M. H. Yoo and M. Wuttig (The Minerals, Metals, and Materials Society, Warrendale, PA, 1994), pp. 275–295.

    Google Scholar 

  11. H. Alexander, P. Haasen, R. Labusch, and W. Schro¨ter, Foreword to J. Phys. (Paris) 40, Colloque C6 (1979).

    Google Scholar 

  12. P. Pirouz, J. W. Yang, J. A. Powell, and F. Ernst, in Microscopy of Semiconducting Materials, edited by A. G. Cullis and N. J. Long (Inst. of Phys. Conf. Ser. 117, Bristol, 1991), pp. 149–154.

    Google Scholar 

  13. P. K. Sitch, R. Jones, S. Öberg, and M. I. Heggie, Phys. Rev. B 52, 4951–4955 (1995).

    Article  CAS  Google Scholar 

  14. G. Feuillet, M.Sc. Thesis, University of Oxford (1982).

  15. K. Marukawa, Philos. Mag. A 40, 303–312 (1979).

    Article  CAS  Google Scholar 

  16. D. Cherns and A. R. Preston, Proceedings of the XIth Int. Cong. on Electron Microscopy, Kyoto, 1986, edited by T. Imura, S. Marusa, and T. Suzuki (Jpn. Soc. Electron Microscopy, Tokyo, Japan), Vol. 1, p. 721.

  17. J. Wang, J. W. Steeds, and D. A. Woolf, Philos. Mag. A 65, 829–839 (1992).

    Article  CAS  Google Scholar 

  18. C. T. Chou, A. R. Preston, and J.W. Steeds, Philos Mag. A 65, 863–888 (1992).

    Article  Google Scholar 

  19. X. J. Ning and P. Pirouz, in Proceedings of the 13th International Congress on Electron Microscopy, edited by B. Jouffrey and C. Colliex (Les E´ditions de Physique 1, Paris, 1994), pp. 895–896.

    Google Scholar 

  20. J. W. Yang, X. J. Ning, and P. Pirouz, in Japan-US Workshop on Functional Fronts in Advanced Ceramics, edited by K. Yanagida and R. Newnham (Ceramic Society of Japan, Tsukuba, Japan, 1994), pp. 55–58.

    Google Scholar 

  21. X. J. Ning and P. Pirouz, in Defect-Interface Interactions, edited by E. P. Kvam, A. H. King, M. J. Mills, T. D. Sands, and V. Vitek (Mater. Res. Soc. Symp. Proc. 319, Pittsburgh, PA, 1994), pp. 441–456.

    Google Scholar 

  22. J. P. Hirth and J. Lothe, Theory of Dislocations (McGraw-Hill, New York, 1968).

    Google Scholar 

  23. For a screw dislocation, the equivalent convention is to assume that b is positive when it is parallel to a left-handed dislocation.

  24. J. A. Powell, J.B. Petit, J.H. Edgar, J.W. Yang, P. Pirouz, W. J. Choyke, L. Clemen, and M. Yoganathan, Appl. Phys. Lett. 59, 333–335 (1991).

    Article  CAS  Google Scholar 

  25. Cree Research, Inc., Durham, N.C.

  26. QM High-Temperature Microhardness Tester, Nikon, Inc., Tokyo, Japan.

  27. M. Tanaka, M. Terauchi, and M. Kaneyama, Convergent-Beam Electron Diffraction II (JEOL, Ltd., Kyoto, Japan, 1988).

    Google Scholar 

  28. P. Pirouz, Scripta Metall. 21, 1463–1468 (1987).

    Article  CAS  Google Scholar 

  29. P. Pirouz and P. M. Hazzledine, Scripta Metall. Mater. 25, 1167–1172 (1991).

    Article  Google Scholar 

  30. P. Pirouz and X. J. Ning in Microscopy of Semiconducting Materials, edited by A. G. Cullis and A. Staton-Bevan (Inst. Phys. Conf. Ser. Bristol, 1995, in press).

  31. X. J. Ning, T. Perez, and P. Pirouz, Philos. Mag. A 72, 837–859 (1995).

    Article  CAS  Google Scholar 

  32. P. B. Hirsch, A. Ourmazd, and P. Pirouz, in Microscopy of Semiconducting Materials, edited by A. G. Cullis and D. C. Joy (Inst. Phys. Conf. Ser. No. 60, Bristol, 1981), pp. 29–34.

    Google Scholar 

  33. M. H. Hon and R. F. Davis, J. Mater. Sci. 14, 2411–2421 (1979).

    Article  CAS  Google Scholar 

  34. M. H. Hon and R. F. Davis, J. Mater. Sci. 15, 2073–2080 (1980).

    Article  CAS  Google Scholar 

  35. K. Maeda, K. Suzuki, and M. Ichihara, Microsc. Microanal. Microstruct. 4, 211–220 (1993).

    Article  CAS  Google Scholar 

  36. P. D. Warren, P. Pirouz, and S. G. Roberts, Philos. Mag. A 50, L23–L28 (1984).

    Article  CAS  Google Scholar 

  37. P. B. Hirsch, P. Pirouz, S. G. Roberts, and P. D. Warren, Philos. Mag. B 52, 759–784 (1985).

    Article  CAS  Google Scholar 

  38. P. Petroff and R. L. Hartman, Appl. Phys. Lett. 23, 469–471 (1973).

    Article  CAS  Google Scholar 

  39. K. Maeda and S. Takeuchi, in Dislocations in Solids, edited by F. R. N. Nabarro and M. S. Duesbery (North-Holland Publishing Co., Amsterdam, 1995), Vol. 10.

  40. M. Heggie and R. Jones, Philos. Mag. B 48, 365–377 (1983).

    Article  CAS  Google Scholar 

  41. M. Heggie and R. Jones, Philos. Mag. B 48, 379–390 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ning, X.J., Pirouz, P. A large angle convergent beam electron diffraction study of the core nature of dislocations in 3C-SiC. Journal of Materials Research 11, 884–894 (1996). https://doi.org/10.1557/JMR.1996.0110

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1996.0110

Navigation