Skip to main content
Log in

Effect of composition on phase formation and morphology in Ti–Si1−xGex solid phase reactions

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The effects of Si1−xGex alloy composition on the Ti-Si1−xGex solid phase reaction have been examined. Specifically, effects on the titanium gcrmanosilicide phase formation sequence. C54 Ti(Si1−yGey)2 nucleation temperature, and C54 Ti(Si1−yGey)2 morphology were examined. It was determined that the Ti-Si1−xGex reaction follows a “Ti-Si-like” reaction path for Si-rich Si1−xGex alloys and follows a “Ti-Ge-like” reaction path for Ge-rich Si1−xGex alloys. The coexistence of multiple titanium germanosilicide phases was observed during Ti-Si1−xGex reactions for Si1−xGex alloys in an intermediate composition range. The morphology and stability of the resulting C54 germanosilicides were directly correlated to the Ti-Si1−xGex reaction path. Smooth continuous C54 titanium germanosilicide was formed for samples with Si1−xGex compositions in the “Ti-Si-like” regime. Discontinuous islanded C54 germanosilicides were formed for samples with Si1−xGex compositions in the mixed phase and “Ti-Ge-like” regimes. Using rapid thermal annealing techniques, it was found that the C54 titanium germanosilicides were stable to higher temperatures. This indicated that the morphological degradation occurs after C54 phase formation. The C54 Ti(Si1−xGex)2 formation temperature was examined as a function of alloy composition and was found to decrease by ≍ 70 °C as the composition approached x ≍ 0.5. An optimum Si1−xGex alloy composition range of 0 ⋚ x ⋚ 0.36 was determined for the formation of stable-continuous-low-resistivity-C54 titanium germanosilicide films from the solid phase reaction of Ti and Si1−xGex alloy. The results were described in terms of the relevant nucleation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. P. Murarka, Metallization: Theory and Practice for VLSI and ULSI (Butterworth-Heinemann, Boston, MA, 1993).

    Google Scholar 

  2. O. Thomas, S. Delage, F. M. d’Heurle, and G. Scilla, Appl. Phys. Lett. 54, 228–230 (1989).

    Article  CAS  Google Scholar 

  3. D. B. Aldrich, C. L. Jahncke, R. J. Nemanich, and D. E. Sayers, in Heteroepitaxy of Dissimilar Materials, edited by R. F. C. Farrow, J. P. Harbison, P. S. Peercy, and A. Zangwill (Mater. Res. Soc. Symp. Proc. 221, Pittsburgh, PA, 1991), pp. 343–348.

  4. D. B. Aldrich, R. J. Nemanich, and D. E. Sayers, in Proceedings of the 7th International Conference on X-ray Absorption Fine Structure, Vol. 32, Suppl. 32-2, edited by H. Kuroda, T. Ohta, T. Murata, Y. Udagawa, and M. Nomura (Japanese Journal of Applied Physics, Tokyo, Japan, 1993), pp. 725–727.

    Google Scholar 

  5. X. Ren, M. C. Öztürk, D. T. Grider, M. Sanganeria, and S. Ashburn, in Rapid Thermal and Integrated Processing II, edited by J. C. Gelpey, J. K. Elliott, J. J. Wortman, and A. Ajmera (Mater. Res. Soc. Symp. Proc. 303, Pittsburgh, PA, 1993), pp. 37–41.

  6. D. T. Grider, M. C. Öztürk, J. J. Wortman, G. S. Harris, and D. M. Maher, in Rapid Thermal and Integrated Processing II, edited by J. C. Gelpey, J. K. Elliott, J. J. Wortman, and A. Ajmera (Mater. Res. Soc. Symp. Proc. 303, Pittsburgh, PA, 1993), pp. 31–36.

  7. S. P. Ashburn, D. T. Grider, and M. C. Öztürk, J. Appl. Phys. 74, 4455 (1993).

    Article  CAS  Google Scholar 

  8. T. J. King, J. R. Priester, J. D. Short, J. P. McVitte, and K. C. Saraswat, IEDM Technical Digest 90, 253 (1990).

    Google Scholar 

  9. T-J. King, K. C. Saraswat, and J. R. Priester, IEEE Electron Device Lett. 12, 584–586 (1991).

    Article  CAS  Google Scholar 

  10. P. M. Garone, V. Venkataraman, and J. C. Sturm, IEDM Technical Digest 90, 383 (1990).

    Google Scholar 

  11. J. C. Strum, E. J. Prinz, and C. W. Magee, IEEE Electron Device Lett. 12, 303–305 (1991).

    Article  Google Scholar 

  12. S. P. Murarka, Suicides for VLSI Applications (Academic Press, New York, 1983).

    Google Scholar 

  13. K. Maex, Mater. Sci. Eng. R11, 53–153 (1993).

    Google Scholar 

  14. Z. Ma, Y. Xu, L. H. Allen, and S. Lee, J. Appl. Phys. 74, 2954–2956 (1993).

    Article  CAS  Google Scholar 

  15. Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, edited by P. Villars and L. D. Calvert (ASM INTERNATIONAL, Materials Park, OH, 1991), Vols. 1–4.

    Google Scholar 

  16. Binary Alloy Phase Diagrams, edited by T. B. Massalski (ASM INTERNATIONAL, Materials Park, OH, 1990), Vol. 3.

    Google Scholar 

  17. R. Beyers and R. Sinclair, J. Appl. Phys. 57, 5240–5245 (1985).

    Article  CAS  Google Scholar 

  18. M. Berti, A. V. Drigo, C. Cohen, J. Siejka, G. G. Bentini, R. Nipoti, and S. Guerri, J. Appl. Phys. 55, 3558–3565 (1984).

    Article  CAS  Google Scholar 

  19. O. Thomas, F. M. d’Heurle, S. Delage, and G. Scilla, Appl. Surf. Sci. 38, 27–36 (1989).

    Article  CAS  Google Scholar 

  20. S. P. Ashburn, M. C. Öztürk, J. J. Wortman, G. Harris, J. Honeycutt, and D. M. Maher, J. Electron. Mat. 21, 81 –86 (1992).

    Article  CAS  Google Scholar 

  21. O. Thomas, F. M. d’Heurle, and S. Delage, J. Mater. Res. 5, 1453–1461 (1990).

    Article  CAS  Google Scholar 

  22. D. B. Aldrich, Y. L. Chen, D. E. Sayers, and R. J. Nemanich, in Silicides, Germanides, and Their Interfaces, edited by R. W. Fathauer, S. Mantl, L. J. Schowalter, and K. N. Tu (Mater. Res. Soc. Symp. Proc. 320, Pittsburgh, PA, 1994), pp. 305–310.

  23. F. M. d’Heurle, J. Mater. Sci. 3, 167–195 (1988).

    Google Scholar 

  24. S. P. Ashburn, Ph.D. Thesis, North Carolina State University (1994).

  25. S. P. Ashburn, M. C. Öztürk, G. Harris, D. M. Maher, D. B. Aldrich, and R. J. Nemanich, private communication.

  26. H. Jeon, C. A. Sukow, J. W. Honeycutt, T. P. Humphreys, R. J. Nemanich, and G. A. Rozgonyi, in Advanced Metallizations in Microelectronics, edited by A. Katz, S. P. Murarka, and A. Appelbaum (Mater. Res. Soc. Symp. Proc. 181, Pittsburgh, PA, 1990), pp. 559–564.

  27. D. B. Aldrich, R. J. Nemanich, and D. E. Sayers, Phys. Rev. B 50, 15 026–15033 (1994).

    Article  CAS  Google Scholar 

  28. Y. Zhong, M. C. Öztürk, D. T. Grider, J. J. Wortman, and M. A. Littlejohn, Appl. Phys. Lett. 57, 2092–2094 (1990).

    Article  CAS  Google Scholar 

  29. D. B. Aldrich, Y. L. Chen, D. E. Sayers, R. J. Nemanich, S. P. Ashburn, and M. C. Öztürk, J. Appl. Phys. 77, 5107–5115 (1995).

    Article  CAS  Google Scholar 

  30. D. B. Aldrich, R. W. Fiordalice, H. Jeon, Q. Islam, R. J. Nemanich, and D. E. Sayers, in Atomic Scale Structure of Interfaces, edited by R. D. Bringans, R. M. Feenstra, and J. M. Gibson (Mater. Res. Soc. Symp. Proc. 159, Pittsburgh, PA, 1990), pp. 167–172.

  31. Y. Dao, A. M. Edwards, D. E. Sayers, and R. J. Nemanich, in Silicides, Germanides, and Their Interfaces, edited by R. W. Fathauer, S. Mantl, L. J. Schowalter, and K. N. Tu (Mater. Res. Soc. Symp. Proc. 320, Pittsburgh, PA, 1994), pp. 367–372.

  32. Q. Z. Hong, K. Barmak, and F. M. d’Heurle, Appl. Phys. Lett. 62, 3435–3437 (1993).

    Article  CAS  Google Scholar 

  33. L. S. Darken and R. W. Gurry, Physical Chemistry of Metals (McGraw-Hill Book Company, Inc., New York, 1953).

    Google Scholar 

  34. H. Jeon and R. J. Nemanich, Thin Solid Films 184, 357–363 (1990).

    Article  CAS  Google Scholar 

  35. H. Jeon, C. A. Sukow, J. W. Honeycutt, G. A. Rozgonyi, and R. J. Nemanich, J. Appl. Phys. 71, 4269–4276 (1992).

    Article  CAS  Google Scholar 

  36. C. A. Sukow and R. J. Nemanich, J. Mater. Res. 9, 1214–1227 (1994).

    Article  CAS  Google Scholar 

  37. B. L. Kropman, Thesis, Universiteit Twente (1993).

  38. R. Pretorius, T. K. Marais, and C. C. Theron, Mater. Sci. Eng. 10, 1–83 (1993).

    CAS  Google Scholar 

  39. P. M. Robinson and M. B. Bever, in Intermetallic Compounds, edited by J. H. Westbrook (John Wiley and Sons, Inc., New York, 1967), pp. 38–78.

    Google Scholar 

  40. R. R. DeAvillez, L. A. Clevenger, and C. V. Thompson, J. Mater. Res. 5, 593–600 (1990).

    Article  Google Scholar 

  41. D. B. Aldrich, D. E. Sayers, and R. J. Nemanich, in Evolution of Surface and Thin Film Microstructure, edited by H. A. Atwater, E. H. Chason, M. L. Grabow, and M. G. Lagally (Mater. Res. Soc. Symp. Proc. 280, Pittsburgh, PA, 1993), pp. 585–588.

  42. CRC Handbook of Chemistry and Physics, edited by D. R. Lide (CRC Press, Inc., Ann Arbor, MI, 1992).

    Google Scholar 

  43. N. Boutarek and R. Madar, Appl. Surf. Sci. 73, 209–213 (1993).

    Article  CAS  Google Scholar 

  44. Cohesion in Metals: Transition Metal Alloys, edited by F. R. deBoer, R. Boom, W. C. M. Mattens, A. R. Miedema, and A. K. Niessen (North-Holland Physics Publishing, New York, 1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aldrich, D.B., Chen, Y.L., Sayers, D.E. et al. Effect of composition on phase formation and morphology in Ti–Si1−xGex solid phase reactions. Journal of Materials Research 10, 2849–2863 (1995). https://doi.org/10.1557/JMR.1995.2849

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1995.2849

Navigation