Skip to main content
Log in

YBa2Cu3O7−x films on off-axis Y-ZrO2 substrates using Y-ZrO2 or Y2O3 barrier layers

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

YBa2Cu3O7−x (YBCO) and barrier layer films were deposited on single-crystal (Y2O3)0.09(ZrO2)0.91 substrates cut between 3.6 and 35.7°off-axis from the (001) planes. The barrier layers were (Y2O3)0.065(Y-ZrO2)0.935(Y-ZrO2), Y2O3, or multilayered structures of Y-ZrO2 and Y2O3. X-ray diffraction showed that the Y-ZrO2 and Y2O3 barrier layers generally grew epitaxially on the off-axis substrates, with the (001) barrier layer film planes being parallel to those of the substrate, and the (100) directions being parallel. YBCO films deposited on Y2O3 barrier layers also showed epitaxy with the YBCO (001) planes being nearly parallel to the substrate (001) planes, even for miscuts up to 35.7°. In contrast, the (001) planes of YBCO films deposited on Y-ZrO2 barrier layers were almost parallel to the substrate surface, not the (001) substrate planes. However, YBCO films on Y-ZrO2 films maintained particular in-plane epitaxial orientations with respect to the substrate. The YBCO full-width at half-maximum (FWHM) x-ray peaks were slightly narrower (0.8°) on Y2O3 barrier layers than on Y-ZrO2 layers (1.3°). The electrical resistivity versus temperature behavior of the YBCO/Y2O3 films was consistent with increased grain boundary scattering as the degree of substrate miscut increased, whereas YBCO/Y-ZrO2 films’ resistivities showed less sensitivity to substrate miscut, consistent with the loss of epitaxy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.P. Norton, D.H. Lowndes, J.D. Budai, D.K. Christen, E.C. Jones, K.W. Lay, and J.E. Tkaczyk, Appl. Phys. Lett. 57, 1164 (1990).

    Article  CAS  Google Scholar 

  2. K. S. Harshavardhan, R. Ramesh, T. S. Ravi, S. Sampere, A. Inam, C.C. Chang, G. Hull, M. Rajeswari, T. Sands, T. Venkatsesan, M. Reeves, J. E. Tkaczyk, and K. W. Lay, Appl. Phys. Lett. 59, 1638 (1991).

    Article  CAS  Google Scholar 

  3. S.M. Garrison, N. Newman, B.F. Cole, K. Char, and R.W. Barton, Appl. Phys. Lett. 58, 2168 (1991).

    Article  CAS  Google Scholar 

  4. J. A. Alarco, G. Brosson, Z. G. Ivanov, P. A. Nilsson, E. Olsson, and M. Lofgren, Appl. Phys. Lett. 61, 723 (1992).

    Article  CAS  Google Scholar 

  5. L.M. Sheppard, Bull. Am. Ceram. Soc. 71, 1242 (1992).

    Google Scholar 

  6. H. Schmidt, K. Hradil, W. Hosier, W. Wersing, G. Gieres, and R.J. Seebock, Appl. Phys. Lett. 59, 222 (1991).

    Article  CAS  Google Scholar 

  7. Y. Iijima, N. Tanabe, O. Kohno, and Y. Ikeno, Appl. Phys. Lett. 60, 769 (1992).

    Article  CAS  Google Scholar 

  8. R. K. Singh, J. Narayan, A. K. Singh, and J. Krishnaswamy, Appl. Phys. Lett. 54, 2271 (1989).

    Article  CAS  Google Scholar 

  9. C. Gerber, D. Anselmetti, J. G. Bednorz, J. Mannhart, and D. G. Scholm, Nature 350, 279.

  10. D.K. Fork, S.M. Garrison, M. Hawley, and T.H. Geballe, J. Mater. Res. 7, 1641 (1992).

    Article  CAS  Google Scholar 

  11. C. C. Chin, H. Takahashi, T. Morishita, and T. Sugimoto, J. Mater. Res. 8, 951 (1993).

    Article  CAS  Google Scholar 

  12. Q. Li, O. Meyer, X.X. Xi, J. Geerk, and G. Linker, Appl. Phys. Lett. 55, 1792 (1989).

    Article  CAS  Google Scholar 

  13. D.H. Lowndes, X. Y. Zhen, S. Zhu, and R.J. Warmack, Appl. Phys. Lett. 61, 852 (1992).

    Article  CAS  Google Scholar 

  14. J.D. Budai, R. Feenstra, and L.A. Boatner, Phys. Rev. B 39, 12355 (1989).

    Article  CAS  Google Scholar 

  15. J.D. Budai, M.F. Chisholm, R. Feenstra, D.H. Lowndes, D.P. Norton, L. A. Boatner, and D. K. Christen, Appl. Phys. Lett. 58, 2174 (1991).

    Article  CAS  Google Scholar 

  16. S.K. Streiffer, B.M. Lairson, and J.C. Bravman, Appl. Phys. Lett. 57, 2501 (1990).

    Article  CAS  Google Scholar 

  17. C.P. Bean, Rev. Mod. Phys., 31 (1964).

  18. S.N. Mukherjee and C.R. Aita, J. Vac. Sci. Technol A 10, 3356 (1992).

    Article  CAS  Google Scholar 

  19. J. Halbritter, J. Appl. Phys. 68, 6315 (1990).

    Article  CAS  Google Scholar 

  20. T.A. Friedman, M.W. Rabin, J. Giapintzakis, J. P. Rice, and D.M. Ginsberg, Phys. Rev. B 42, 6219 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mueller, C.H., Holloway, P.H., Budai, J.D. et al. YBa2Cu3O7−x films on off-axis Y-ZrO2 substrates using Y-ZrO2 or Y2O3 barrier layers. Journal of Materials Research 10, 810–816 (1995). https://doi.org/10.1557/JMR.1995.0810

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1995.0810

Navigation