Skip to main content
Log in

Role of boundaries on low-field magnetotransport properties of La0.7Sr0.3MnO3-based nanocomposite thin films

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The effects of boundaries such as grain boundaries and phase boundaries on low-field magnetoresistance (LFMR) have been investigated in single-phase lanthanum strontium manganates, in this case La0.7Sr0.3MnO3 (LSMO) and LSMO: zinc oxide (ZnO) nanocomposite thin films. In the pure LSMO films with similar grain size, it is found that the LFMR increases as the grain misorientation factor (β) increases. The LFMR in the nanocomposite films is greatly enhanced, as compared with single-phase films, due to the reduced grain size, and increased phase boundary (PB) and β effects. The composition study shows that the LFMR can be dramatically enhanced when the secondary phase content approaches the percolation threshold. The increased β and secondary phase concentration reduce the cross-section of electron conduction paths and favor the formation of the quasi-one-dimensional transport channels. Our results demonstrate that the reduction of cross-section of the electron conduction paths by tuning the grain orientation and secondary phase composition is necessary for enhancing LFMR effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
TABLE I.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.

Similar content being viewed by others

References

  1. J.P. Buban, K. Matsunaga, J. Chen, N. Shibata, W.Y. Ching, T. Yamamoto, and Y. Ikuhara: Grain boundary strengthening in alumina by rare earth impurities. Science 311, 212 (2006).

    Article  CAS  Google Scholar 

  2. H.S. Hsu, J.C.A. Huang, S.F. Chen, and C.P. Liu: Role of grain boundary and grain defects on ferromagnetism in Co:ZnO films. Appl. Phys. Lett. 90, 102506 (2007).

    Article  Google Scholar 

  3. H.Y. Hwang, S.W. Cheong, N.P. Ong, and B. Batlogg: Spin-polarized intergrain tunneling in La2/3Sr1/3MnO3. Phys. Rev. Lett. 77, 2041 (1996).

    Article  CAS  Google Scholar 

  4. X.W. Li, A. Gupta, G. Xiao, and G.Q. Gong: Low-field magnetoresistive properties of polycrystalline and epitaxial perovskite manganite films. Appl. Phys. Lett. 71, 1124 (1997).

    Article  CAS  Google Scholar 

  5. B.S. Kang, H. Wang, J.L. MacManus-Driscoll, Y. Li, Q.X. Jia, I. Mihut, and J.B. Betts: Low field magnetotransport properties of (La0.7Sr0.3MnO3)0.5:(ZnO)0.5 nanocomposite films. Appl. Phys. Lett. 88, 3 (2006).

    Google Scholar 

  6. M. Staruch, D. Hires, A.P. Chen, Z. Bi, H. Wang, and M. Jain: Enhanced low-field magnetoresistance in La0.67Sr0.33MnO3:MgO composite films. J. Appl. Phys. 110, 113913 (2011).

    Article  Google Scholar 

  7. A. Gupta, G.Q. Gong, G. Xiao, P.R. Duncombe, P. Lecoeur, P. Trouilloud, Y.Y. Wang, V.P. Dravid, and J.Z. Sun: Grain-boundary effects on the magnetoresistance properties of perovskite manganite films. Phys. Rev. B 54, 15629 (1996).

    Article  Google Scholar 

  8. J. Rivas, L.E. Hueso, A. Fondado, F. Rivadulla, and M.A. Lopez-Quintela: Low field magnetoresistance effects in fine particles of La0.67Ca0.33MnO3 perovskites. J. Magn. Magn. Mater. 221, 57 (2000).

    Article  CAS  Google Scholar 

  9. A.P. Chen, Z.X. Bi, C.F. Tsai, L. Chen, Q. Su, X.H. Zhang, and H.Y. Wang: Tilted aligned epitaxial La0.7Sr0.3MnO3 nanocolumnar films with enhanced low-field magnetoresistance by pulsed laser oblique-angle deposition. Cryst. Growth Des. 11, 5405 (2011).

    Article  CAS  Google Scholar 

  10. M. Ziese: Grain-boundary magnetoresistance in manganites: Spin-polarized inelastic tunneling through a spin-glass-like barrier. Phys. Rev. B 60, R738 (1999).

    Article  CAS  Google Scholar 

  11. H. Yang, Z.E. Cao, X. Shen, T. Xian, W.J. Feng, J.L. Jiang, Y.C. Feng, Z.Q. Wei, and J.F. Dai: Fabrication of 0-3 type manganite/insulator composites and manipulation of their magnetotransport properties. J. Appl. Phys. 106, 104317 (2009).

    Article  Google Scholar 

  12. L. Yan, L.B. Kong, T. Yang, W.C. Goh, C.Y. Tan, C.K. Ong, M.A. Rahman, T. Osipowicz, and M.Q. Ren: Enhanced low field magnetoresistance of Al2O3-La0.7Sr0.3MnO3 composite thin films via a pulsed laser deposition. J. Appl. Phys. 96, 1568 (2004).

    Article  CAS  Google Scholar 

  13. J.H. Miao, L. Yuan, Y.Q. Wang, J.L. Shang, G.Q. Yu, G.M. Ren, X. Xiao, and S.L. Yuan: Electrical transport and magnetoresistance in La2/3Ca1/3MnO3/CuO composites. Mater. Lett. 60, 2214 (2006).

    Article  CAS  Google Scholar 

  14. M. Eshraghi, H. Salamati, and P. Kameli: The effect of NiO doping on the structure, magnetic and magnetotransport properties of La0.8Sr0.2MnO3 composite. J. Alloys Compd. 437, 22 (2007).

    Article  CAS  Google Scholar 

  15. L. Gao, L.F. Bai, C.S. Li, X.H. Liu, Z.W. Wu, D.N. Zheng, and Y.F. Lu: Electrical transport and magnetoresistance in La2/3Ca1/3MnO3/BaZrO3 composites. J. Alloys Compd. 522, 25 (2012).

    Article  CAS  Google Scholar 

  16. F.Y. Chen, Y.Y. Wu, Y.H. Xiong, L.J. Li, Z.L. Liu, and C.S. Xiong: Electrical properties and enhanced room temperature magnetoresistance in La0.7Ca0.2Sr0.1MnO3/Pd composites prepared by chemical plating. J. Magn. Magn. Mater. 324, 3286 (2012).

    Article  CAS  Google Scholar 

  17. Y.B. Lin, Z.G. Huang, Y.M. Yang, S. Wang, S.D. Li, F.M. Zhang, and Y.W. Du: Giant positive magnetoresistance in heterostructure (La0.7Sr0.3MnO3) coated with YBa2Cu3O7 composites. Appl. Phys. A 104, 143 (2011).

    Article  CAS  Google Scholar 

  18. Y.M. Kang, H.J. Kim, and S.I. Yoo: Excellent low field magnetoresistance properties of the La0.7Sr0.3Mn1+dO3-manganese oxide composites. Appl. Phys. Lett. 95, 052510 (2009).

    Article  Google Scholar 

  19. W.J. Lu, Y.P. Sun, X.B. Zhu, W.H. Song, and J.J. Du: Low-field magnetoresistance in La0.8Sr0.2MnO3/ZrO2 composite system. Mater. Lett. 60, 3207 (2006).

    Article  CAS  Google Scholar 

  20. H.J. Kim and S.I. Yoo: Enhanced low field magnetoresistance in La0.7Sr0.3MnO3-La2O3 composites. J. Alloys Compd. 521, 30 (2012).

    Article  CAS  Google Scholar 

  21. Z.F. Zi, Y.K. Fu, Q.C. Liu, J.M. Dai, and Y.P. Sun: Enhanced low-field magnetoresistance in LSMO/SFO composite system. J. Magn. Magn. Mater. 324, 1117 (2012).

    Article  CAS  Google Scholar 

  22. A.P. Chen, Z.X. Bi, H. Hazariwala, X.H. Zhang, Q. Su, L. Chen, Q.X. Jia, J.L. MacManus-Driscoll, and H.Y. Wang: Microstructure, magnetic, and low-field magnetotransport properties of self-assembled (La0.7Sr0.3MnO3)0.5:(CeO2)0.5 vertically aligned nanocomposite thin films. Nanotechnology 22, 315712 (2011).

    Article  Google Scholar 

  23. S.D. Bhame, J.F. Fagnard, M. Pekala, P. Vanderbemden, and B. Vertruyen: La0.7Ca0.3MnO3/Mn3O4 composites: Does an insulating secondary phase always enhance the low field magnetoresistance of manganites?J. Appl. Phys. 111, 063905 (2012).

    Article  Google Scholar 

  24. X.L. Wang, S.X. Dou, H.K. Liu, M. Ionescu, and B. Zeimetz: Large low-field magnetoresistance over a wide temperature range induced by weak-link grain boundaries in La0.7Ca0.3MnO3. Appl. Phys. Lett. 73, 396 (1998).

    Article  CAS  Google Scholar 

  25. A.P. Chen, W. Zhang, F. Khatkatay, Q. Su, C-F. Tsai, L. Chen, Q.X. Jia, J.L. MacManus Driscoll, and H. Wang: Magnetotransport properties of quasi-one-dimensionally channeled vertically aligned heteroepitaxial nanomazes. Appl. Phys. Lett. 102, 093114 (2013).

    Article  Google Scholar 

  26. Z.X. Bi, E. Weal, H.M. Luo, A.P. Chen, J.L. MacManus-Driscoll, Q.X. Jia, and H.Y. Wang: Microstructural and magnetic properties of (La0.7Sr0.3MnO3)0.7:(Mn3O4)0.3 nanocomposite thin films. J. Appl. Phys. 109, 054302 (2011).

    Article  Google Scholar 

  27. A.P. Chen, Z.X. Bi, C.F. Tsai, J. Lee, Q. Su, X.H. Zhang, Q.X. Jia, J.L. MacManus-Driscoll, and H.Y. Wang: Tunable low-field magnetoresistance in (La0.7Sr0.3MnO3)0.5:(ZnO)0.5 self-assembled vertically aligned nanocomposite thin films. Adv. Funct. Mater. 21, 2423 (2011).

    Article  CAS  Google Scholar 

  28. A.P. Chen, Z.X. Bi, Q.X. Jia, J.L. MacManus-Driscoll, and H.Y. Wang: Microstructure, vertical strain control and tunable functionalities in self-assembled, vertically aligned nanocomposite thin films. Acta Mater. 61, 2783 (2013).

    Article  CAS  Google Scholar 

  29. Y.F. Yang, H. Long, G. Yang, A.P. Chen, Q.G. Zheng, and P.X. Lu: Femtosecond laser deposited zinc oxide film and its optical properties. Vacuum 83, 892 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the U.S. National Science Foundation (Ceramic Program, NSF-1007969 and NSF-0846504). The work at Los Alamos was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. J.L.M-D thanks the Advanced Investigator Grant, Novox, ERC-2009-adG 247276.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyan Wang.

Additional information

This author was an editor of this focus issue during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr-editor-manuscripts/

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, A., Zhang, W., Jian, J. et al. Role of boundaries on low-field magnetotransport properties of La0.7Sr0.3MnO3-based nanocomposite thin films. Journal of Materials Research 28, 1707–1715 (2013). https://doi.org/10.1557/jmr.2013.89

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.89

Navigation