Skip to main content
Log in

Modified embedded-atom method interatomic potentials for the Nb-C, Nb-N, Fe-Nb-C, and Fe-Nb-N systems

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Modified embedded-atom method (MEAM) interatomic potentials for Nb-C, Nb-N, Fe-Nb-C, and Fe-Nb-N systems have been developed based on the previously developed MEAM potentials for lower order systems. The potentials reproduce various fundamental physical properties (structural properties, elastic properties, thermal properties, and surface properties) of NbC and NbN, and interfacial energy between bcc Fe and NbC or NbN, in generally good agreement with higher-level calculations or experimental information. The applicability of the present potentials to atomic-level investigations to the precipitation behavior of complex-carbonitrides (Nb,Ti)(C,N) as well as NbC and NbN, and their effects on the mechanical properties of steels are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.I. Isaev, S.I. Simak, I.A. Abrikosov, R. Ahuja, Yu.Kh. Vekilov, M.I. Katsnelson, A.I. Lichtenstein, B. Johansson: Phonon related properties of transition metals, their carbides, and nitrides: A first-principles study. J. Appl. Phys.101123519 (2007)

    Google Scholar 

  2. E.I. Isaev, R. Ahuja, S.I. Simak, A.I. Lichtenstein, Y.K. Vekilov, B. Johansson, I.A. Abrikosov: Anomalously enhanced superconductivity and ab initio lattice dynamics in transition metal carbides and nitrides. Phys. Rev. B72064515 (2005)

    Google Scholar 

  3. K.B. Joshi, U. Paliwal: First-principles study of structural and bonding properties of vanadium carbide and niobium carbide. Phys. Scr.80055601 (2009)

    Google Scholar 

  4. F. Tran, R. Laskowski, P. Blaha, K. Schwarz: Performance on molecules, surfaces, and solids of the Wu-Cohen GGA exchange-correlation energy functional. Phys. Rev. B75115131 (2007)

    Google Scholar 

  5. W-S. Jung, S-H. Chung, H-P. Ha, J-Y. Byun: An ab initio study of the energetics for interfaces between group V transition metal nitrides and bcc iron. Modell. Simul. Mater. Sci. Eng.14479 (2006)

    CAS  Google Scholar 

  6. S-H. Chung, H-P. Ha, W-S. Jung, J-Y. Byun: An ab initio study of the energetics for interfaces between group V transition metal carbides and bcc iron. ISIJ Int.461523 (2006)

    CAS  Google Scholar 

  7. Z. Wu, X.J. Chen, V.V. Struzhkin, R.E. Cohen: Trends in elasticity and electronic structure of transition-metal nitrides and carbides from first principles. Phys. Rev. B71214103 (2005)

    Google Scholar 

  8. X.J. Chen, V.V. Struzhkin, Z. Wu, M. Somayazulu, J. Qian, S. Kung, A.N. Christensen, Y. Zhao, R.E. Cohen, H.K. Mao, R.J. Hemley: Hard superconducting nitrides. Proc. Nat. Acad. Sci. U.S.A.1023198 (2005)

    CAS  Google Scholar 

  9. I.M. Iskandarova, A.A. Knizhnik, B.V. Potapkin, A.A. Safonov, A.A. Bagatur’yants, L.R.C. Fonseca: First-principles investigation of the electronic properties of niobium and molybdenum mononitride surfaces. Surf. Sci.58369 (2005)

    CAS  Google Scholar 

  10. H.W. Hugosson, O. Eriksson, U. Jansson, A.V. Ruban, P. Souvatzis, I.A. Abrikosov: Surface energies and work functions of the transition metal carbides. Surf. Sci.557243 (2004)

    CAS  Google Scholar 

  11. H.W. Hugosson, O. Eriksson, U. Jansson, B. Johansson: Phase stabilities and homogeneity ranges in 4d-transition-metal carbides: A theoretical study. Phys. Rev. B63134108 (2001)

    Google Scholar 

  12. T. Amriou, B. Bouhafs, H. Aourag, B. Khelifa, S. Bresson, C. Mathieu: FP-LAPW investigations of electronic structure and bonding mechanism of NbC and NbN compounds. Physica B32546 (2003)

    CAS  Google Scholar 

  13. C. Stampfl, W. Mannstadt, R. Asahi, A.J. Freeman: Electronic structure and physical properties of early transition metal mononitrides: Density-functional theory LDA, GGA, and screened-exchange LDA FLAPW calculations. Phys. Rev. B63155106 (2001)

    Google Scholar 

  14. K. Kobayashi: Electronic structure and physical properties of early transition metal mononitrides: Density-functional theory LDA, GGA, and screened-exchange LDA FLAPW calculations. Jpn. J. Appl. Phys.394311 (2000)

    CAS  Google Scholar 

  15. G.L.W. Hart, B.M. Klein: Phonon and elastic instabilities in MoC and MoN. Phys. Rev. B613151 (2000)

    CAS  Google Scholar 

  16. S. Öğüt, K.M. Rabe: Polymorphism and metastability in NbN: Structural predictions from first principles. Phys. Rev. B52R8585 (1995)

    Google Scholar 

  17. A.F. Guillermet, J. Häglund, G. Grimvall: Cohesive properties of 4d-transition-metal carbides and nitrides in the NaCl-type structure. Phys. Rev. B4511557 (1992)

    Google Scholar 

  18. J. Chen, L.L. Boyer, H. Krakauer, M.J. Mehl: Elastic constants of NbC and MoN: Instability of B1-MoN. Phys. Rev. B373295 (1988)

    CAS  Google Scholar 

  19. D.A. Papaconstantopoulos, W.E. Pickett, B.M. Klein, L.L. Boyer: Electronic properties of transition-metal nitrides: The group-V and group-VI nitrides VN, NbN, TaN, CrN, MoN, and WN. Phys. Rev. B31752 (1985)

    CAS  Google Scholar 

  20. B-J. Lee, M.I. Baskes: Second nearest-neighbor modified embedded-atom-method potential. Phys. Rev. B628564 (2000)

    CAS  Google Scholar 

  21. B-J. Lee, M.I. Baskes, H. Kim, Y.K. Cho: Second nearest-neighbor modified embedded atom method potentials for bcc transition metals. Phys. Rev. B64184102 (2001)

    Google Scholar 

  22. M.I. Baskes: Modified embedded-atom potentials for cubic materials and impurities. Phys. Rev. B462727 (1992)

    CAS  Google Scholar 

  23. B-J. Lee, J.W. Lee: A modified embedded atom method interatomic potential for carbon. Calphad297 (2005)

    CAS  Google Scholar 

  24. B-J. Lee: A modified embedded-atom method interatomic potential for the Fe-C system. Acta Mater.54701 (2006)

    Google Scholar 

  25. B-J. Lee, T-H. Lee, S-J. Kim: A modified embedded-atom method interatomic potential for the Fe-N system: A comparative study with the Fe-C system. Acta Mater.544597 (2006)

    CAS  Google Scholar 

  26. I.Y. Sa, B-J. Lee: Modified embedded-atom method interatomic potentials for the Fe-Nb and Fe-Ti binary systems. Scr. Mater.59595 (2008)

    CAS  Google Scholar 

  27. Y-M. Kim, B-J. Lee: Modified embedded-atom method interatomic potentials for the Ti-C and Ti-N binary systems. Acta Mater.563481 (2008)

    CAS  Google Scholar 

  28. H-K. Kim, W-S. Jung, B-J. Lee: Modified embedded-atom method interatomic potentials for the Fe-Ti-C and Fe-Ti-N ternary systems. Acta Mater.573140 (2009)

    CAS  Google Scholar 

  29. J.H. Rose, J.R. Smith, F. Guinea, J. Ferrante: Universal features of the equation of state of metals. Phys. Rev. B292963 (1984)

    CAS  Google Scholar 

  30. M.I. Baskes: Determination of modified embedded atom method parameters for nickel. Mater. Chem. Phys.50152 (1997)

    CAS  Google Scholar 

  31. E. Rudy, F. Benesovsky, K. Sedlatschek: A study of the Nb-Mo-C system. Monatsh. Chem.92841 (1961)

    CAS  Google Scholar 

  32. H.O. Pierson Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing and Applications (Noyes Publications, Westwood, NJ 1996)

    Google Scholar 

  33. L.E. Toth Transition Metal Carbides and Nitrides (Academic Press, New York 1971)

    Google Scholar 

  34. E.K. Storm Los Alamos Scientific Laboratory Report La-2942 (The Office of Technical Services, U.S. Department of Commerce, Washington, DC 1964)

    Google Scholar 

  35. E.J. Huber Jr., E.L. Head, C.E. Holley Jr., E.K. Storms, N.H. Krikorian: The heats of combustion of niobium carbides. J. Phys. Chem.651846 (1961)

    CAS  Google Scholar 

  36. E.K. Storms, N.H. Krikorian: The niobium-niobium carbide system. J. Phys. Chem.641471 (1960)

    CAS  Google Scholar 

  37. I.P. Parkin: Solid state metathesis reaction for metal borides, silicides, pnictides and chalcogenides: Ionic or elemental pathways. Chem. Soc. Rev.25199 (1996)

    CAS  Google Scholar 

  38. A. Teresiak, H. Kubsch: X-ray investigations of high-energy ball milled transition metal carbides. Nanostruct. Mater.6671 (1995)

    Google Scholar 

  39. W. Huang, M. Selleby: Thermodynamic assessment of the Nb-W-C system. Z. Metallkd.8855 (1997)

    CAS  Google Scholar 

  40. B-J. Lee: Thermodynamic assessment of the Fe-Nb-Ti-C-N system. Metall. Mater. Trans. A322423 (2001)

    Google Scholar 

  41. A.N. Christensen: Preparation and structure of stoichiometric δ-NbN. Acta Chem. Scand. Ser. A3177 (1977)

    Google Scholar 

  42. G. Heger, O. Baumgartner: Crystal structure and lattice distortion of γ-NbNx and δ-NbNx. J. Phys. C: Solid State Phys.135833 (1980)

    CAS  Google Scholar 

  43. W. Lengauer, P. Ettmayer: Preparation and properties of compact cubic δ-NbN1-x. Monatsh. Chem.117275 (1986)

    CAS  Google Scholar 

  44. G. Brauer, H. Kirner: High pressure synthesis of niobium nitrides and constitution of δ-NbN. Z. Anorg. Allg. Chem.32834 (1964)

    CAS  Google Scholar 

  45. A.D. Mah, N.L. Gellert: Heats of formation of niobium nitride, tantalum nitride and zirconium nitride from combustion calorimetry. J. Am. Chem. Soc.783261 (1956)

    CAS  Google Scholar 

  46. M.W. Chase Jr., C.A. Davies, J.R. Downey Jr., D.J. Frurip, R.A. McDonald, A.N. Syverud: JANAF themodynamics tables 3rd ed. J. Phys. Chem. Ref. Data14, (Suppl. 1) 1616 (1985)

    Google Scholar 

  47. W. Huang: Thermodynamic assessment of the Nb-N system. Metall. Mater. Trans. A273591 (1996)

    Google Scholar 

  48. T.A. Panaioti: Ion nitriding of tantalum and niobium alloys. Met. Sci. Heat Treat.44439 (2002)

    Google Scholar 

  49. A.N. Christensen: Preparation and crystal structure of β-Nb2N and γ-NbN. Acta Chem. Scand. Ser. A30219 (1976)

    Google Scholar 

  50. J.R. Cost, C.A. Wert: Metal-gas equilibrium in the niobium-nitrogen terminal solid solution. Acta Metall.11231 (1963)

    CAS  Google Scholar 

  51. A.D. Mah: Heats of formation of niobium dioxide, niobium subnitride and tantalum subnitride. J. Am. Chem. Soc.803872 (1958)

    CAS  Google Scholar 

  52. V.A. Gubanov, A.L. Ivanovsky, V.P. Zhukov Electronic Structure of Refractory Carbides and Nitrides (Cambridge University Press, Cambridge, UK 1994)

    Google Scholar 

  53. W. Weber: Lattice dynamics of transition-metal carbides. Phys. Rev. B85082 (1973)

    CAS  Google Scholar 

  54. A.N. Christensen, O.W. Dietrich, W. Kress, W.D. Teuchert, R. Currat: Phonon anomalies in transition metal nitrides: δ-NbN. Solid State Commun.31795 (1979)

    CAS  Google Scholar 

  55. J.O. Kim, J.D. Achenbach, P.B. Mirkarimi, M. Shinn, S.A. Barnett: Elastic constants of single-crystal transition-metal nitride films measured by line-focus acoustic microscopy. J. Appl. Phys.721805 (1992)

    CAS  Google Scholar 

  56. B-J. Lee Update of steel database Unpublished work at KTH (1999)

    Google Scholar 

  57. A. Perecherla, W.S. Williams: Room-temperature thermal conductivity of cemented transition-metal carbides. J. Am. Ceram. Soc.711130 (1988)

    CAS  Google Scholar 

  58. H. Holleck: Material selection for hard coatings. J. Vac. Sci. Technol., A42661 (1986)

    CAS  Google Scholar 

  59. F. Perrard, A. Deschamps, P. Maugis: Modelling the precipitation of NbC on dislocations in α-Fe. Acta Mater.551255 (2007)

    CAS  Google Scholar 

  60. N. Fujita, H.K.D.H. Bhadeshia, M. Kikuchi: Precipitation sequence in niobium-alloyed ferritic stainless steel. Modell. Simul. Mater. Sci. Eng.12273 (2004)

    CAS  Google Scholar 

  61. F. Perrard, P. Donnadieu, A. Deschamps, P. Barges: TEM study of NbC heterogeneous precipitation in ferrite. Philos. Mag.864271 (2006)

    CAS  Google Scholar 

  62. F.G. Wei, T. Hara, K. Tsuzaki: High-resolution transmission-electron-microscopy study of crystallography and morphology of TiC precipitates in tempered steel. Philos. Mag.841735 (2004)

    CAS  Google Scholar 

  63. K. Miyata, T. Omura, T. Kushida, Y. Komizo: Coarsening kinetics of multicomponent MC-type carbides in high-strength low-alloy steels. Metall. Mater. Trans. A341565 (2003)

    Google Scholar 

  64. E. Courtois, T. Epicier, C. Scott: EELS study of niobium carbo-nitride nano-precipitates in ferrite. Micron37492 (2006)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byeong-Joo Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, HK., Jung, WS. & Lee, BJ. Modified embedded-atom method interatomic potentials for the Nb-C, Nb-N, Fe-Nb-C, and Fe-Nb-N systems. Journal of Materials Research 25, 1288–1297 (2010). https://doi.org/10.1557/JMR.2010.0182

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2010.0182

Navigation