Skip to main content
Log in

Formation and characterization of calcium silicate hydrate–hexadecyltrimethylammonium nanostructure

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Results of an investigation of the interaction potential of synthetic and pre-treated calcium silicate hydrate (C-S-H) [with hexadecyltrimethylammonium (HDTMA)] are reported. The effective and strong interaction of these molecules with the C-S-H surface was shown using 13C and 29Si cross polarization magic angle spinning (CP MAS) nuclear magnetic resonance, x-ray diffraction, thermogravimetric analysis, scanning electron microscopy, and Fourier transform infrared spectroscopy analysis. The HDTMA–C-S-H interaction is influenced by the poorly crystallized layered structure of C-S-H. An indefinite number of layers and an irregular arrangement are confirmed by the SEM images. The position and shape of the 002 reflection of C-S-H are affected by drying procedures, chemical pre-treatment, and reaction temperature. Recovery of the initial 002 peak position after severe drying and rewetting with distilled water or interaction with HDTMA is incomplete but accompanied by an increase in intensity. It is inferred that the stability of C-S-H binders in concrete can be affected by a variation in nanostructure resulting from engineering variables such as curing temperature and use of chemical admixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE I
FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13
FIG. 14
FIG. 15

Similar content being viewed by others

References

  1. P.W. Brown, H.F.W. Taylor: The role of ettringite in external sulfate attack in Materials Science of Concrete: Special Volume on Sulfate Attack Mechanisms edited by J. Marchand and J.P. Skalny American Ceramic Society Westerville, OH 2000 73

    Google Scholar 

  2. J. Marchand: Modeling the behavior of unsaturated cement systems exposed to aggressive chemical environments. Mater. Struct. 34, 195 2001

    Article  CAS  Google Scholar 

  3. H.F.W. Taylor, C. Famy, K. Scrivener: Delayed ettringite formation. Cem. Concr. Res. 31, 683 2001

    Article  CAS  Google Scholar 

  4. G.G. Litvan: Volume stability of porous solids. Part I in Proceedings of the 7th International Congress on Chemistry of Cement, Paris, France 1980 3, VII–46–VII–50

  5. J.A. Raussell-Colom, M.J. Serraiosa: in Chemistry of Clays and Clay Minerals edited by A.C.D. Newman Mineralogical Society London 1987 371

  6. P.C. Lebaron, Z. Wang, T.J. Pinnavaia: Polymer-layered silicate nanocomposites: An overview. Appl. Clay Sci. 15, 11 1999

    Article  CAS  Google Scholar 

  7. E.P. Giannelis: Polymer-layered silicate nanocomposites: Synthesis, properties and applications. Appl. Organomet. Chem. 12, 675 1998

    Article  CAS  Google Scholar 

  8. R.K. Bharadwaj: Modeling the barrier properties of polymer layered silicate nanocomposites. Macromolecules 34, 1989 2001

    Article  Google Scholar 

  9. J.W. Gilman, T. Kashiwagi, J.D. Lichtenhan: Flammability studies of polymer-layered silicate nanocomposites. SAMPE J. 33, 40 1997

    CAS  Google Scholar 

  10. R.S. Sinha, K. Yamada, M. Okamoto, K. Ueda: New polylactide/ layered silicate nanocomposite: A novel biodegradable material. Nano Lett. 2, 1093 2002

    Article  Google Scholar 

  11. H. Van Olphen: Interaction of clays and organic compounds in An Introduction to Clay and Colloid Chemistry John Wiley & Sons New York 1977 318

    Google Scholar 

  12. J.J. Tunney, C. Detellier: Interlammellar covalent grafting of organic units on kaolinite. Chem. Mater. 5, 747 1993

    Article  CAS  Google Scholar 

  13. J.J. Tunney, C. Detellier: Preparation and characterization of an 8.4 A hydrate kaolinite. Clays Clay Miner. 42, 552 1994

    Article  CAS  Google Scholar 

  14. B. Velde: Clay structures in Introduction to Clay Minerals edited by B. Velde Chapman and Hall London, UK 1992 195

    Chapter  Google Scholar 

  15. W. Dosch: Interlamellar reaction of tetracalcium aluminate hydrates with water and organic compounds in Proceedings of the 15th National Conference on Clay and Clay Minerals, edited by S.W. Bailey Pergamon Press NY 1966 273–292

  16. V.H. Terisse, A. Nonat, C.J. Petit: Zeta potential study of calcium silicate hydrates interacting with alkaline cations. J. Colloid Interface Sci. 244, 58 2001

    Article  Google Scholar 

  17. I.G. Richardson: Tobermorite/jennite and tobermorite/calcium hydroxide-based models for the structure of C-S-H: Applicability to hardened pastes of tricalcium silicate, β-dicalcium silicate, Portland cement and blends of Portland cement with blast furnace slag, metakaolin or silica fume. Cement Concrete Res. 34, 1733 2004

    Article  CAS  Google Scholar 

  18. I. Pointeau, B. Piriou, M. Fedoroff, G.M. Bartes, N. Marmier, F. Fromage: Sorption mechanisms of Eu3+ on C-S-H phases of hydrated cements. J. Colloid Interface Sci. 236, 252 2001

    Article  CAS  Google Scholar 

  19. A.J. Allen, J.J. Thomas, H. Jennings: Composition and density of nanoscale calcium-silicate-hydrate in cement. Nat. Mater. 6, 311 2007

    Article  CAS  Google Scholar 

  20. R.F. Feldman, P.J. Sereda: The new model for hydrated Portland cement and its practical implications. Eng. J. 53, 53 1970

    Google Scholar 

  21. H.W. Taylor: Hydration of the calcium silicate phases in Cement Chemistry Academic Press London, UK 1990 475

    Google Scholar 

  22. S.A. Hamid: The crystal structure of the 11A tobermorite Ca2.25[Si3O7.5(OH)1.5] ⋅ 1H2O. Z. Kristallogr. 154, 189 1981

    CAS  Google Scholar 

  23. R.F. Feldman, P.J. Sereda: A model for hydrated Portland cement paste as deduced from sorption-length change and mechanical properties. Mater. Construct. 1, 509 1968

    Article  CAS  Google Scholar 

  24. J.J. Beaudoin: Why engineers need materials science. Concrete Int. 21, 86 1999

    CAS  Google Scholar 

  25. L.B. Alemany, D.M. Grant, T.D. Alger, R.J. Pugmire: Cross-polarization and magic angle spinning NMR spectra of model organic compounds 3. Effect of 13C–1H dipolar interaction on cross-polarization and carbon proton dephasing. J. Am. Chem. Soc. 105, 6697 1983

    Article  CAS  Google Scholar 

  26. S.J. Opella, M.H. Frey: Selection of protonated carbon resonances in solid state nuclear magnetic resonance. J. Am. Chem. Soc. 101, 5954 1979

    Google Scholar 

  27. J.A. Ripmeester, N.E. Burlinson: Chiral discrimination and solid state 13C NMR. Application to tri-o-thymotide clathrates. J. Am. Chem. Soc. 107, 3713 1985

    Article  CAS  Google Scholar 

  28. H. Viallis, P. Faucon, J.C. Petit, A. Nonat: Interaction between salts (NaCl, CsCl) and calcium silicate hydrates (C-S-H). J. Phys. Chem. B 103, 6697 1999

    Article  Google Scholar 

  29. H. Matsuyama, J.F. Young: Intercalation of polymers in calcium silicate hydrate: A new synthetic approach to biocomposites. Chem. Mater. 11, 16 1999

    Article  CAS  Google Scholar 

  30. A. Franceschini, S. Abramson, B. Bresson, H. Vandamme, N. Lequeux: Cement-silylated polymers nanocomposites in Proc. 12th Int. Cong. Chem. Cem., Theme ST5, edited by J.J. Beaudoin, J.M. Maker, and L. Raki, National Research Council Canada 2007

  31. H.F.W. Taylor: Hydration of the calcium silicate phases in Cement Chemistry 2nd ed. Thomas Telford London, UK 1997 475

    Chapter  Google Scholar 

  32. H. Drame, J.J. Beaudoin, L. Raki: Volume stability of hydrated calcium silicate systems exposed to aqueous salt solutions. J. Mater. Sci. 42, 6837 2007

    Article  CAS  Google Scholar 

  33. R.F. Feldman, V.S. Ramachandran: Microstructure of calcium hydroxide depleted Portland cement paste. I: Density and helium flow measurements. Cem. Con. Res. 12, 179 1982

    Article  CAS  Google Scholar 

  34. G.W. Brindley, R.W. Hoffman: Orientation and packing of aliphatic chain molecules on montmorillonite. Clays Clay Miner. 9, 546 1962

    Article  CAS  Google Scholar 

  35. X. Cong, R.J. Kirkpatrick: Effects of the temperature and relative humidity on the structure of C-S-H gel. Cem. Concr. Res. 25, 1237 1995

    Article  Google Scholar 

  36. A.H. Delgado, R.M. Paroli, J.J. Beaudoin: Comparison of IR techniques for the characterization of construction cement and hydrated products. Appl. Spec. 50, 970 1996

    Article  CAS  Google Scholar 

  37. P. Yu, R.J. Kirkpatrick, B. Poe, P.F. Mcmillan: Structure of calcium silicate hydrate (C-S-H): Near-, mid-, and far-infrared spectroscopy. J. Am. Ceram. Soc. 82, 742 1999

    Article  CAS  Google Scholar 

  38. H.F.W. Taylor, A.B. Turner: Reactions of tricalcium silicate paste with organic liquids. Cem. Concr. Res. 17, 613 1987

    Article  CAS  Google Scholar 

  39. J.J. Beaudoin: Thermal analysis and IR spectroscopy in Handbook of analytical techniques in concrete science and technology edited by V.S. Ramachandran and J.J. Beaudoin William Andrew Publishers New York 2001 964

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James J. Beaudoin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beaudoin, J.J., Dramé, H., Raki, L. et al. Formation and characterization of calcium silicate hydrate–hexadecyltrimethylammonium nanostructure. Journal of Materials Research 23, 2804–2815 (2008). https://doi.org/10.1557/JMR.2008.0342

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2008.0342

Navigation