Skip to main content
Log in

Compressive properties of bulk metallic glass with small aspect ratio

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The quasi-static compressive deformation behavior of a Vitreloy 1 bulk metallic glass (BMG) with an aspect ratio of 0.25 was investigated. It is found that the friction and the confinement at the specimen–loading platen interface will cause the dramatic increase in the compressive load, leading to higher compressive strength. In particular, the BMG specimens show great plastic-deformation ability, and plenty of interacted, deflected, wavy, or branched shear bands were observed on the surfaces after plastic deformation. The formation of the strongly interacted, deflected, wavy, or branched shear bands can be attributed to the triaxial stress state in the glassy specimens with a very small aspect ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Inoue: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).

    Article  CAS  Google Scholar 

  2. J.F. Löffler: Bulk metallic glasses. Intermetallics. 11, 529 (2003).

    Article  Google Scholar 

  3. W.H. Wang, C. Dong, and C.H. Shek: Bulk metallic glasses. Mater. Sci. Eng. R 44, 45 (2004).

    Article  Google Scholar 

  4. A.I. Salimon, M.F. Ashby, Y. Brechet, and A.L. Greer: Bulk metallic glasses: What are they good for? Mater. Sci. Eng., A 375–377, 385 (2004).

    Article  Google Scholar 

  5. H.A. Bruck, T. Christman, A.J. Rosakis, and W.L. Johnson: Quasi-static constitutive behavior of Zr41.25Ti13.75Ni10Cu12.5Be22.5 bulk amorphous-alloys. Scripta Metall. Mater. 30, 429 (1994).

    Article  CAS  Google Scholar 

  6. H.A. Bruck, A.J. Rosakis, and W.L. Johnson: The dynamic compressive behavior of beryllium bearing bulk metallic glasses. J. Mater. Res. 11, 503 (1996).

    Article  CAS  Google Scholar 

  7. H. Choi-Yimhoi-Yim and W.L. Johnson: Bulk metallic glass matrix composites. Appl. Phys. Lett. 71, 3808 (1997).

    Article  Google Scholar 

  8. R.D. Conner, R.B. Dandliker, and W.L. Johnson: Mechanical properties of tungsten and steel fiber reinforced Zr41.25Ti13.75Cu12.5Ni10Be22.5 metallic glass matrix composites. Acta Mater. 46, 6089 (1998).

    Article  CAS  Google Scholar 

  9. D.H. Bae, M.H. Lee, D.H. Kim, and D.J. Sordelet: Plasticity in Ni59Zr20Ti16Si2Sn3 metallic glass matrix composites containing brass fibers synthesized by warm extrusion of powders. Appl. Phys. Lett. 83, 2312 (2003).

    Article  CAS  Google Scholar 

  10. C.C. Hays, C.P. Kim, and W.L. Johnson: Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phys. Rev. Lett. 84, 2901 (2000).

    Article  CAS  Google Scholar 

  11. G. He, J. Eckert, and W. Löser: Stability, phase transformation and deformation behavior of Ti-base metallic glass and composites. Acta Mater. 51, 1621 (2003).

    Article  CAS  Google Scholar 

  12. F.F. Wu, Z.F. Zhang, A. Peker, S.X. Mao, J. Das, and J. Eckert: Strength asymmetry of ductile dendrites reinforced Zr- and Ti-based composites. J. Mater. Res. 21, 2331 (2006).

    Article  CAS  Google Scholar 

  13. R.D. Conner, Y. Li, W.D. Nix, and W.L. Johnson: Shear band spacing under bending of Zr-based metallic glass plates. Acta Mater. 52, 2429 (2004).

    Article  CAS  Google Scholar 

  14. Z.F. Zhang, H. Zhang, X.F. Pan, J. Das, and J. Eckert: Effect of aspect ratio on the compressive deformation and fracture behaviour of Zr-based bulk metallic glass. Philos. Mag. Lett. 85, 513 (2005).

    Article  CAS  Google Scholar 

  15. H. Bei, S. Xie, and E.P. George: Softening caused by profuse shear banding in a bulk metallic glass. Phys. Rev. Lett. 96, 105503 (2006).

    CAS  Google Scholar 

  16. A.H. Brothers and D.C. Dunand: Syntactic bulk metallic glass foam. Appl. Phys. Lett. 84, 1108 (2004).

    CAS  Google Scholar 

  17. A.H. Brothers and D.C. Dunand: Plasticity and damage in cellular amorphous metals. Acta Mater. 53, 4427 (2005).

    CAS  Google Scholar 

  18. Y. Yokoyama, K. Yamano, K. Fukaura, H. Sunada, and A. Inoue: Enhancement of ductility and plasticity of Zr55Cu30Al10Ni5 bulk glassy alloy by cold rolling. Mater. Trans. 42, 623 (2001).

    CAS  Google Scholar 

  19. L.A. Davis and S. Kavesh: Deformation and fracture of an amorphous metallic alloy at high pressure. J. Mater. Sci. 10, 453 (1975).

    CAS  Google Scholar 

  20. J.J. Lewandowski and P. Lowhaphandu: Effects of hydrostatic pressure on the flow and fracture of a bulk amorphous metal. Philos. Mag. A 82, 3427 (2002).

    Article  CAS  Google Scholar 

  21. J. Lu and G. Ravichandran: Pressure-dependent flow behavior of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass. J. Mater. Res. 18, 2039 (2003).

    Article  CAS  Google Scholar 

  22. G.P. Sunny, V. Prakash, and J.J. Lewandowski: Results from a novel insert design for high strain-rate compression of a bulk metallic glass, in Proceedings of the 2006 International Mechanical Engineering Conference and Exposition (American Society of Mechanical Engineers, New York, NY, 2006).

    Google Scholar 

  23. G.P. Sunny, F. Yuan, J.J. Lewandowski, and V. Prakash: Dynamic stress-strain response of a Zr-based bulk metallic glass, in Proceedings of the 2005 SEM Annual Conference and Exposition on Experimental and Applied Mechanics (Society of Experimental Mechanics, Bethel, CT, 2005).

    Google Scholar 

  24. G. Subhash, R.J. Dowding, and L.J. Kecskes: Characterization of uniaxial compressive response of bulk amorphous Zr-Ti-Cu-Ni-Be alloy. Mater. Sci. Eng., A 334, 33 (2002).

    Article  Google Scholar 

  25. J. Lu, G. Ravichandran, and W.L. Johnson: Deformation behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass over a wide range of strain-rates and temperatures. Acta Mater. 51, 3429 (2003).

    Article  CAS  Google Scholar 

  26. Z.F. Zhang, J. Eckert, and L. Schultz: Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass. Acta Mater. 51, 1167 (2003).

    Article  CAS  Google Scholar 

  27. Z.F. Zhang, D. Brunner, C. Scheu, and M. Rühle: Deformation and fracture mechanisms of Al2O3/Nb/Al2O3 composites under compression. Z. Metallkd. 96, 62 (2005).

    Article  CAS  Google Scholar 

  28. B. Avitzur: Handbook of Metal Forming (John Wiley & Sons, New York, 1983).

    Google Scholar 

  29. H. Chen, Y. He, G.J. Shiflet, and S.J. Poon: Deformation-induced nanocrystal formation in shear bands of amorphous-alloys. Nature 367, 541 (1994).

    Article  CAS  Google Scholar 

  30. Z.F. Zhang, H. Zhang, B.L. Shen, A. Inoue, and J. Eckert: Shear fracture and fragmentation mechanisms of bulk metallic glasses. Philos. Mag. Lett. 86, 643 (2006).

    Article  CAS  Google Scholar 

  31. Z.F. Zhang and J. Eckert: Unified tensile fracture criterion. Phys. Rev. Lett. 94, 094301 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. F. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, F.F., Zhang, Z.F. & Mao, S.X. Compressive properties of bulk metallic glass with small aspect ratio. Journal of Materials Research 22, 501–507 (2007). https://doi.org/10.1557/jmr.2007.0064

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2007.0064

Navigation