Skip to main content
Log in

Growth of width-controlled nanowires MnO2 from mesoporous carbon and investigation of their properties

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

One-dimensional α-MnO2 nanowires with a controlled width of 10–20 nm have been developed by means of ultrasonic waves from mesoporous carbon using KMnO4 as the precursor. The formation mechanism has been proposed based on the results. A peak around 100 K was detected in the temperature-dependence of magnetization curve, indicating the ferromagnetic state in nanocomposite mesoporous carbon-MnO2, which is in agreement with the transition temperature found from the magnetization versus applied magnetic field curve. The magnetization versus temperature curve of the obtained MnO2 nanowires showed a magnetic transition at about 50 K, illustrating that a parasitic ferromagnetic component is composed on the antiferromagnetic structure of MnO2. The advantage of the method reported here is that phase-controlled synthesis of α-MnO2 nanowires was implemented regardless of pH, temperature, and types of ions in the reaction system. A major advantage of this approach is the efficient, fast, and reproducible control of width and the facile strategy to synthesize nanowires MnO2, in addition to the high purity of the resultant material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Tian, W. Tong, J. Wang, N. Duan, V.V. Krishnan, S.L. Suib: Manganese oxide mesoporous structures: Mixed-valent semiconducting catalysts. Science 276, 926 (2002).

    Article  Google Scholar 

  2. A. Perner, K. Holl, D. Ilic, M. Wohlfahrt-Mehrens: A new MnOx cathode material for rechargeable lithium batteries. Eur. J. Inorg. Chem. 5, 1108 (2002).

    Article  Google Scholar 

  3. R. Chitrakar, H. Kanoh, Y.S. Kim, Y. Miyai, K. Ooi: Synthesis of layered-type hydrous manganese oxides from monoclinic-type LiMnO2. J. Solid State Chem. 160, 69 (2001).

    Article  CAS  Google Scholar 

  4. J.B. Yang, X.D. Zhou, W.J. James, S.K. Malik, C.S. Wang: Growth and magnetic properties of MnO2-δ nanowire microspheres. Appl. Phys. Lett. 85, 3160 (2004).

    Article  CAS  Google Scholar 

  5. Z.W. Pan, Z.R. Dai, Z.L. Wang: Nanobelts of semiconducting oxides. Science 291, 1947 (2001).

    Article  CAS  Google Scholar 

  6. A. Govindaraj, B.C. Satishkumar, M. Nath, C.N.R Rao: Metal nanowires and intercalated metal layers in single-walled carbon nanotube bundles. Chem. Mater. 12, 202 (2000).

    Article  CAS  Google Scholar 

  7. J. Sloan, D.M. Wright, H.G. Woo, S. Bailey, A.P.E York, K.S. Coleman, M.L.H Green, D.M. Wright, J.L. Hutchison, H.G. Woo: Capillarity and silver nanowire formation observed in single walled carbon nanotubes. Chem. Commun. 8, 699 (1999).

    Article  Google Scholar 

  8. C.M. Lieber: One-dimensional nanostructures: Chemistry, physics and applications. Solid State Commun. 107, 607 (1998).

    Article  CAS  Google Scholar 

  9. J.J. Urban, W.S. Yun, Q. Gu, H.K. Park: Synthesis of single-crystalline perovskite nanorods composed of barium titanate and strontium titanate. J. Am. Chem. Soc. 124, 1186 (2002).

    Article  CAS  Google Scholar 

  10. M. Li, H. Schnablegger, S. Mann: Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization. Nature 402, 393 (1999).

    Article  CAS  Google Scholar 

  11. X.F. Duan, Y. Huang, Y. Cui, J.F. Wang, C.M. Lieber: Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409, 66 (2001).

    Article  CAS  Google Scholar 

  12. X. Wang, Y. Li: Synthesis and formation mechanism of manganese dioxide nanowires/nanorods. Chem. -Eur. J. 9, 300 (2003).

    Article  Google Scholar 

  13. Y.J. Han, J.M. Kim, G.D. Stucky: Preparation of noble metal nanowires using hexagonal mesoporous silica SBA-15. Chem. Mater. 12, 2068 (2000).

    Article  CAS  Google Scholar 

  14. F. Gao, Q. Lu, D. Zhao: Synthesis of crystalline mesoporous CdS semiconductor nanoarrays through a mesoporous SBA-15 silica template technique. Adv. Mater. 15, 739 (2003).

    Article  CAS  Google Scholar 

  15. A.H. Janssen, C.M. Yang, Y. Wang, F. Schüth, A.J. Koster, K.P. Jong: Localization of small metal (oxide) particles in SBA-15 using bright-field electron tomography. J. Phys. Chem. B 107, 10552 (2003).

    Article  CAS  Google Scholar 

  16. B. Tian, X. Liu, H. Yang, S. Xie, C. Yu, B. Tu, D. Zhao: General synthesis of ordered crystallized metal oxide nanoarrays replicated by microwave-digested mesoporous silica. Adv. Mater. 15, 1370 (2003).

    Article  CAS  Google Scholar 

  17. H. Yang, Q. Shi, B. Tian, Q. Lu, F. Gao, S. Xie, J. Fan, C. Yu, B. Tu, D. Zhao: One-step nanocasting synthesis of highly ordered single crystalline indium oxide nanowire arrays from mesostructured frameworks. J. Am. Chem. Soc. 125, 4724 (2003).

    Article  CAS  Google Scholar 

  18. M. Wei, Y. Konishi, H. Zhou, H. Sugihara, H. Arakawa: Synthesis of single-crystal manganese dioxide nanowires by a soft chemical process. Nanotechnology 16, 245 (2005).

    Article  CAS  Google Scholar 

  19. A. Dong, N. Ren, Y. Tang, Y. Wang, Y. Zhang, W. Hua, Z. Gao: General synthesis of mesoporous spheres of metal oxides and phosphates. J. Am. Chem. Soc. 125, 4976 (2003).

    Article  CAS  Google Scholar 

  20. W. Li, A. Lu, C. Weidenthaler, R. Goddard, H.J. Bongard, F. Schüth: Growth of single crystal-Al2O3 nanofibers on a carbon aerogel substrate. J. Mater. Chem. 15, 2993 (2005).

    Article  CAS  Google Scholar 

  21. P. Dibandjo, F. Chassagneux, L. Bois, C. Sigala, P. Miele: Comparison between SBA-15 silica and CMK-3 carbon nanocasting for mesoporous boron nitride synthesis. J. Mater. Chem. 15, 1917 (2005).

    Article  CAS  Google Scholar 

  22. W. Li, A. Lu, C. Weidenthaler, F. Schuth: Hard-templating pathway to create mesoporous magnesium oxide. Chem. Mater. 16, 5676 (2004).

    Article  CAS  Google Scholar 

  23. M. Imperor-Clerc, D. Bazin, M.D. Appay, P. Beaunier, A. Davidson: Crystallization of β-MnO2 nanowires in the pores of SBA-15 silicas: In situ investigation using synchrotron radiation. Chem. Mater. 16, 1813 (2004).

    Article  CAS  Google Scholar 

  24. S. Zhu, H. Zhou, M. Hibino, I. Honma, M. Ichihara: Synthesis of MnO2 nanoparticles confined in ordered mesoporous carbon using a sonochemical method. Adv. Funct. Mater. 15, 381 (2005).

    Article  CAS  Google Scholar 

  25. M. Kruk, M. Jaroniec, C.H. Ko, R. Ryoo: Characterization of the porous structure of SBA-15. Chem. Mater. 12, 196 (2000).

    Google Scholar 

  26. S.H. Joo, S.J. Choi, I. Oh, J. Kwak, Z. Liu, Q. Terasaki, R. Ryoo: Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 412, 169 (2001).

    Article  CAS  Google Scholar 

  27. T.D. Xiao, P.R. Strutt, M. Benaiss, H. Chen, B.H. Kear: Synthesis of high active-site density nanofibrous MnO2-base materials with enhanced permeabilities. Nanostruct. Mater. 10, 1051 (1998).

    Article  CAS  Google Scholar 

  28. Z. Liu, Y. Sakamoto, T. Ohsuna, K. Hiraga, O. Terasaki, C.H. Ko, H.J. Shin, R. Ryoo: TEM studies of platinum nanowires fabricated in mesoporous silica MCM-41. Angew. Chem., Int. Ed. 39, 3107 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shenmin Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, S., Wang, X., Huang, W. et al. Growth of width-controlled nanowires MnO2 from mesoporous carbon and investigation of their properties. Journal of Materials Research 21, 2847–2854 (2006). https://doi.org/10.1557/jmr.2006.0356

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0356

Navigation