Skip to main content
Log in

In situ transmission electron microscopy investigation of radiation effects

  • Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In situ observation is of great value in the study of radiation damage utilizing electron or ion irradiation. We summarize the facilities and give examples of work found around the world. In situ observations of irradiation behavior have fallen into two broad classes. One class consists of long-term irradiation, with observations of microstructural evolution as a function of the radiation dose in which the advantage of in situ observation has been the maintenance of specimen position, orientation, and temperature. A second class has involved the recording of individual damage events in situations in which subsequent evolution would render the correct interpretation of ex situ observations impossible. In this review, examples of the first class of observation include ion-beam amorphization, damage accumulation, plastic flow, implant precipitation, precipitate evolution under irradiation, and damage recovery by thermal annealing. Examples of the second class of observation include single isolated ion impacts that produce defects in the form of dislocation loops, amorphous zones, or surface craters, and single ion impact-sputtering events. Experiments in both classes of observations attempt to reveal the kinetics underlying damage production, accumulation, and evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D.W. Pashley and A.E.B. Presland: The relation between specimen contamination and the movement of dislocations produced in metal films during E. M. examination. Philos. Mag. 6, 1003 (1961).

    Article  CAS  Google Scholar 

  2. C.W. Allen: In situ irradiation effects studies in medium and high voltage TEM. In Proceedings of the 53rd Annual Microscopy Society of America Meeting, Kansas City, MO, 80, (1995).

    Google Scholar 

  3. C.W. Allen, and D. Dorignac: Survey of high voltage electron microscopy worldwide in 1998. Electron Microsc. 1, 275 (1998).

    Google Scholar 

  4. W.E. King, K.L. Merkle, and M. Meshii: Determination of the threshold-energy surface for copper using in-situ electricalresistivity measurements in the high-voltage electron microscope. Phys. Rev. B: Condens. Matter 23, 6319 (1981).

    Article  CAS  Google Scholar 

  5. K. Hojou, S. Furuno, H. Ohtsu, K. Izui, and T. Tsukamoto: In situ observation system of the dynamic process of structural changes during ion irradiation and its application to SiC and TiC crystals. J. Nucl. Mater. 155–157, 298 (1988).

    Google Scholar 

  6. M-O. Ruault, M. Lerme, B. Jouffrey, and J. Chaumont: Adaptation of an ion implanter on a 100 kV electron microscope for in situ irradiation experiments. J. Phys. E: Sci. Instrum. 11, 1125 (1979).

    Google Scholar 

  7. M-O. Ruault, J. Chaumont, and H. Bernas: Transmissionelectron- microscopy study of ion implantation induced Si amorphization: Material modifications under ion irradiation; JANNUS project. Nucl. Instrum. Methods Phys. Res., Sect. B 209/210, 351 (1983).

    Google Scholar 

  8. A. Taylor, C.W. Allen, and E.A. Ryan: The HVEM-Tandem accelerator facility at Argonne National Laboratory. Nucl. Instrum. Methods Phys. Res., Sect. B 24/25, 598 (1987).

    Google Scholar 

  9. C.W. Allen, L.L.. Funk, E.A. Ryan, and S.T. Ockers: The HVEM-tandem accelerator facility at Argonne National Laboratory. Nucl. Instrum. Methods Phys. Res., Sect. B 40/41, 553 (1989).

    Google Scholar 

  10. C.W. Allen: In situ ion- and electron-irradiation effects studies in transmission electron microscopes. Ultramicroscopy 56, 200 (1994).

    CAS  Google Scholar 

  11. S. Ishino: Time and temperature dependence of cascade induced defect production in in situ experiments and computer simulation. J. Nucl. Mater. 206, 139 (1993).

    CAS  Google Scholar 

  12. C.W. Allen, S. Ohnuki, and H. Takahaski: Facilities for in situ ion beam studies in transmission electron microscopes. Trans. Mater. Res. Soc. Jpn. 17, 93 (1994).

    Google Scholar 

  13. S. Ishino, H. Kawanishi, K. Fukuya, and T. Muroga: In situ studies of the effects of ion beams on materials using the electron microscope ion beam interface. IEEE Trans. Nucl. Sci. NS. 30(2), 1255 (1983).

    Google Scholar 

  14. T. Takeyama, S. Ohnuki, and H. Takahasi: Study of cavity formation in 316 stainless steels by means of HVEM/ionaccelerator dual irradiation. J. Nucl. Mater. 133–134, 571 (1985).

    Google Scholar 

  15. K. Furuya, M. Piao, N. Ishikawa, and T. Saito: High resolution transmission electron microscopy of defect clusters in aluminum during electron and ion irradiation at room temperature, in Microstructure Evolution During Irradiation, edited by I.M. Robertson, G.S. Was, L.W. Hobbs, and T. Diaz de la Rubia (Mater. Res. Soc. Symp. Proc. 439, Pittsburgh, PA, 1997) p. 331.

    CAS  Google Scholar 

  16. K. Furuya, K. Mitsuishi, M. Song, and T. Saito: In-situ, analytical, high-voltage and high resolution transmission electron microscopy of Xe ion implantation into Al. J. Electron Microsc. 48, 511 (1999).

    CAS  Google Scholar 

  17. B. Hu, H. Kinoshita, T. Shibayama, and H. Takahaski: Effects of helium on radiation behavior in low activation Fe-Cr-Mn alloys. Mater. Trans., JIM 43, 622 (2002).

    CAS  Google Scholar 

  18. K. Hojou, S. Furuno, H. Ohtsu, K. Izui, and T. Tsukamoto: In-situ observation system of the dynamic process of structual changes during ion irradiation and its application to SiC and TiC crystals. J. Nucl. Mater. 155–157, 298 (1988).

    Google Scholar 

  19. K. Furuya, T. Saito, I. Yamada, and T. Hata: In situ microlithography of Si and GaAs by a focused ion beam in a 200 keV TEM. J. Electron Microsc. 45, 291 (1996).

    CAS  Google Scholar 

  20. M. Tanaka, K. Furuya, and T. Saito: Focused ion beam interfaced with a 200 keV transmission electron microscope for in situ micropatterning on semiconductors. Microsc. Microanal. 4, 207 (1998).

    CAS  Google Scholar 

  21. Y. Serruys, M-O. Ruault, P. Trocellier, S. Henry, O. Kaïtasov, and Ph. Trouslard: Material modifications under ion irradiation: JANNUS project. Presented at the 22nd Summer School and International Symposium the Physics of Ionized Gases, AIP Conference Proceedings, 740(1), p. 164 (2004).

    CAS  Google Scholar 

  22. S. Takeda, and T. Kamino: Agglomeration of self-interstitials in Si observed at 450 C by high-resolution transmission electron microscopy. Phys. Rev. B: Condens. Matter 51(4), 2148 (1995).

    CAS  Google Scholar 

  23. D.J. Eaglesham, P.A. Stolk, H-J. Gossmann, and J.M. Poate: Implantation and transient B diffusion in Si: The source of the interstitials. Appl. Phys. Lett. 65(18), 2305 (1994).

    CAS  Google Scholar 

  24. J. Yamasaki, S. Takeda, and K. Tsuda: Elemental process of amorphization induced by electron irradiation in Si. Phys. Rev. B: Condens. Matter 65, 115213 (2002).

    Google Scholar 

  25. D.N. Seidman, R.S. Averback, P.R. Okamoto, and A.C. Baily: Amorphization processes in electron- and/or ion-irradiated silicon. Phys. Rev. Lett. 58, 900 (1987).

    CAS  Google Scholar 

  26. I. Jencic, M.W. Bench, I.M. Robertson, and M.A. Kirk: Electron beam induced crystallization of isolated amorphous regions in Si, Ge, GaP and GaAs. J. Appl. Phys. 78, 974 (1995).

    CAS  Google Scholar 

  27. N. Ishikawa, K. Furuya, M. Awaji, R.C. Birtcher, and C.W. Allen: HRTEM analysis of Xe precipitates in Al. Nucl. Instrum. Methods Phys. Res., Sect. B 127/128, 123 (1997).

    CAS  Google Scholar 

  28. C.W. Allen, R.C. Birtcher, S.E. Donnelly, K. Furuya, N. Ishikawa, and M. Song: Migration and coalescence of Xe nanoprecipitates in Al induced by electron irradiation. Appl. Phys. Lett. 74, 2611 (1999).

    CAS  Google Scholar 

  29. R.C. Birtcher, S.E. Donnelly, M. Song, K. Furuya, K. Mitsuishi, and C.W. Allen: Coalescence of solid Xe precipitates in Al. Phys. Rev. Lett. 83, 1617 (1999).

    CAS  Google Scholar 

  30. T.J. Black, M.L. Jenkins, C.A. English, and M.A. Kirk: Displacement cascade collapse at low temperatures in Cu3Au. Proc. R. Soc. London, Ser. A 409, 177 (1987).

    Article  CAS  Google Scholar 

  31. J.S. Vetrano, I.M. Robertson, and M.A. Kirk: Effect of dilute additions on loop formation from heavy-ion produced displacement cascades in Ni. Philos. Mag. A. 68, 381 (1993).

    Article  CAS  Google Scholar 

  32. I.M. Robertson, M.A. Kirk, and W.E. King: Formation of dislocation loops in iron by self-ion irradiations at 40K. Scripta Met. 18, 317 (1984).

    Article  CAS  Google Scholar 

  33. D.K. Tappin, I.M. Robertson, and M.A. Kirk: The role of electron- phonon coupling in the formation of clustered vacancy defects in elemental metals from heavy-ion irradiation. Philos. Mag. A. 70, 463 (1994).

    Article  CAS  Google Scholar 

  34. D.J. Bacon, A.F. Calder, F. Gao, V.G. Kapinos, and S.J. Wooding: Computer simulation of defect production by displacement cascades in metals. Nucl. Instrum. Methods B102, 37 (1995).

    Article  Google Scholar 

  35. M.A. Kirk, M.L. Jenkins, and H. Fukushima: The search for interstitial dislocation loops produced in displacement cascades at 20 K in copper. J. Nucl. Mater. 276, 50 (2000).

    Article  CAS  Google Scholar 

  36. M.L. Jenkins, M.A. Kirk, and H. Fukushima: On the application of the weak-beam technique to the determination of the sizes of small point-defect clusters in ion-irradiated copper. J. Electron Microsc. 48, 323 (1999).

    Article  CAS  Google Scholar 

  37. T.L. Daulton, M.A. Kirk, and L.E. Rehn: In-situ transmissionelectron- microscopy study of ion-irradiated copper: Temperature dependence of defect yield and cascade collapse. Philos. Mag. A. 80, 809 (2000).

    Article  CAS  Google Scholar 

  38. M.A. Kirk, I.M. Robertson, J.S. Vetrano, M.L. Jenkins, and L.L. Funk: The collapse of defect cascades to dislocation loops during self-ion irradiations of iron, nickel and copper at 30, 300, and 600 K. ASTM Spec. Tech. Publ. 955, 48 (1987).

    CAS  Google Scholar 

  39. K.L. Merkle, and W. Jäger: Direct observation of spike effects in heavy ion sputtering. Philos. Mag. A 44, 741 (1981).

    Article  CAS  Google Scholar 

  40. R.C. Birtcher and S.E. Donnelly: Plastic flow induced by single ion impacts on gold. Phys. Rev. Lett. 77, 4374 (1996).

    Article  CAS  Google Scholar 

  41. S.E. Donnelly and R.C. Birtcher: Heavy ion cratering of gold. Phys. Rev. B 56, B1 13599 (1997).

    Article  CAS  Google Scholar 

  42. S.E. Donnelly and R.C. Birtcher: Ion-induced spike effects on metal surfaces. Philos. Mag. A. 79, 133 (1999).

    Article  CAS  Google Scholar 

  43. R.C. Birtcher and S.E. Donnelly: Plastic flow in FCC metals induced by single-ion impacts. Mater. Chem. Phys. 54(1–3), 111 (1998).

    Article  CAS  Google Scholar 

  44. R.C. Birtcher and S.E. Donnelly: Sputtering of Au induced by single Xe ion impacts, in Fundamental Mechanisms of Low- Energy-Beam-Modified Surface Growth and Processing, edited by S.C. Moss, E.H. Chason, B.H. Cooper, J.M.E. Harper, T. Diaz de la Rubia, and M.V.R. Murty (Mater. Res. Soc. Symp. Proc. 585, Warrendale, PA, 2000) p. 117.

    CAS  Google Scholar 

  45. R.C. Birtcher, S.E. Donnelly, and S. Schlutig: Nanoparticle ejection from Au induced by single ion impacts. Phys. Rev. Lett. 85, 4968 (2000).

    Article  CAS  Google Scholar 

  46. R.C. Birtcher, S.E. Donnelly, and S. Schlutig: Nanoparticle ejection during ion irradiation of gold. Nucl. Instrum. Methods Phys. Res., Sect. B 215, 69 (2004).

    Article  CAS  Google Scholar 

  47. L.E. Rehn, R.C. Birtcher, S.E. Donnelly, P.M. Baldo, and L. Funk: Origin of atomic clusters during ion sputtering. Phys. Rev. Lett. 87, 207601 (2001).

    Article  CAS  Google Scholar 

  48. I.S. Bitensky and E.S. Parilis: Shock wave mechanism for cluster emission and organic molecule desorption under heavy ion bombardment. Nucl. Instrum. Methods Phys. Res., Sect. B 21, 26 (1987).

    Article  Google Scholar 

  49. J. Ronchi: The nature of surface fission tracks in UO2. J. Appl. Phys. 44, 3575 (1973).

    Article  CAS  Google Scholar 

  50. K. Nordlund, J. Keinonen, M. Ghaly, and R.S. Averback: Recoils, flows and explosions: surface damage mechanisms in metals and semiconductors during 50 eV-50 keV ion bombardment. Nucl. Instrum. Methods Phys. Res. B 148, 74 (1999).

    Article  CAS  Google Scholar 

  51. C. Staudt, R. Heinrich, and A. Wucher: Formation of large clusters during sputtering of silver. Nucl. Instrum. Methods Phys. Res. B 164–165, 677 (2000).

    Article  Google Scholar 

  52. H.M. Urbassek: Sputtered cluster mass distributions, thermodynamic equilibrium and critical phenomena. Nucl. Instrum. Methods Phys. Res. B 31, 541 (1988).

    Article  Google Scholar 

  53. P.R. Okamoto, N.Q. Lam, and L.E. Rehn: Physics of crystalto- glass transformations, in Solid State Physics: Advances in Research and Applications, Vol. 52, edited by H. Ehrenreich, and F. Spaepen. (Academic Press, New York, NY, 1999) pp. 1–135.

    Article  CAS  Google Scholar 

  54. P.R. Okamoto, L.E. Rehn, J. Pearson, R. Bhadra, and M. Grimsditch: Brillouin scattering and transmission electron microscopy studies of radiation-induced elastic softening, disordering and amorphization of intermetallic compounds. J. Less-Common Met. 140, 231 (1988).

    Article  CAS  Google Scholar 

  55. C.W. Allen, R.C. Birtcher, L.E. Rehn, and G.L. Hofman: An ion–beam simulation of the swelling of U3Si, in Fundamental of Beam-Solid Interactions and Transient Thermal Processing, edited by M.J. Aziz, L.E. Rehn, and B. Stritzker (Mater. Res. Soc. Symp. Proc. 100, Pittsburgh, PA, 1988) p. 237.

    CAS  Google Scholar 

  56. R.C. Birtcher, C.W. Allen, L.E. Rehn, and G.L. Hofman: A simulation of the swelling of intermetallic reactor fuels. J. Nucl. Mater. 152, 73 (1988).

    Article  CAS  Google Scholar 

  57. R.C. Birtcher, C.W. Allen, G.L. Hofman, and L.E. Rehn: In situ high voltage electron microscopy investigation of catastrophic swelling in uranium intermetallic fuels, in 14th International Symposium on Effects of Irradiation on Materials, Andover, MA 1988, edited by N.H. Packan, R.E. Stoller, and A.S. Kumar (ASTM, Philadelphia, PA, 1990) p. 782.

    Google Scholar 

  58. L.M. Wang and R.C. Birtcher: Radiation-induced formation of cavities in amorphous germanium. Appl. Phys. Lett. 55, 2494 (1989).

    Article  CAS  Google Scholar 

  59. L.M. Wang and R.C. Birtcher: Amorphization, morphological instability and crystallization of krypton irradiated germanium. Philos. Mag. A. 64, 1209 (1991).

    Article  CAS  Google Scholar 

  60. S.X. Wang, L.M. Wang, and R.C. Ewing: Irradiation-induced amorphization: Effects of temperature, ion mass, cascade size, and dose rate. Phys. Rev. B: Condens. Matter 63, 024105 (2000).

    Article  Google Scholar 

  61. G.R. Lumpkin, K.R. Whittle, S. Rios, K.L. Smith, and N.J. Zaluzec: Temperature dependence of ion irradiation damage in the pyrochlores La2Zr2O7 and La2Hf2O7. J. Phys.: Condens. Matter 16, 8557 (2004).

    CAS  Google Scholar 

  62. K.L. Smith, N.J. Zaluzec, and G.R. Lumpkin: In situ studies of ion irradiated zirconolite, pyrochlore and perovskite. J. Nucl. Mater. 250, 36 (1997).

    Article  CAS  Google Scholar 

  63. S.X. Wang, L.M. Wang, R.C. Ewing, G.S. Was, and G.R. Lumpkin: Ion irradiation-induced phase transformation of pyrochlore and zirconolite. Nucl. Instrum. Methods Phys. Res., Sect. B 148, 704 (1999).

    Article  CAS  Google Scholar 

  64. S.X. Wang, L.M. Wang, R.C. Ewing, and K.V. Govindan Kutty: Ion irradiation effects for two pyrochlore compositions: Gd2Ti2O7 and Gd2Zr2O7, in Microstructural Processes in Irradiated Materials, edited by S.J. Zinkle, G.E. Lucas, R.C. Ewing, and J.S. Williams (Mater. Res. Soc. Symp. Proc. 540, Warrendale, PA, 1999) p. 355.

    CAS  Google Scholar 

  65. S.X. Wang, B.D. Begg, L.M. Wang, R.C. Ewing, W.J. Weber, and K.V. Govindan Kutty: Radiation stability of gadolinium zirconate: A waste form for plutonium disposition. J. Mater. Res. 14, 4470 (1999).

    Article  CAS  Google Scholar 

  66. S.X. Wang, L.M. Wang, R.C. Ewing, and K.V. Govindan Kutty: Ion irradiation of reare-earth- and yttrium-titanate-pyrochlores. Nucl. Instrum. Methods Phys. Res., Sect. B 169, 135 (2000).

    Article  CAS  Google Scholar 

  67. B.D. Begg, N.J. Hess, W.J. Weber, R. Devanathan, J.P. Icenhower, S. Thevuthasan, and B.P. McGrail: Heavy-ion irradiation effects on structures and acid dissolution of pyrochlores. J. Nucl. Mater. 288, 208 (2001).

    Article  CAS  Google Scholar 

  68. J. Lian, X.T. Zu, K.V.G. Kutty, J. Chen, L.M. Wang, and R.C. Ewing: Ion-irradiation-induced amorphization of La2Zr2O7 pyrochlore. Phys. Rev. B: Condens. Matter. 66, 054108 (2002).

    Article  CAS  Google Scholar 

  69. J. Lian, J. Chen, L.M. Wang, R.C. Ewing, J.M. Farmer, L.A. Boatner, and K.B. Helean: Radiation-induced amorphization of rare-earth titanate pyrochlores. Phys. Rev. B: Condens. Matter 68, 134107 (2003).

    Article  CAS  Google Scholar 

  70. J. Lian, L.M. Wang, R.G. Haire, K.B. Helean, and R.C. Ewing: Ion beam irradiation in La2Zr2O7-Ce2Zr2O7 pyrochlore. Nucl. Instrum. Methods Phys. Res., Sect. B 218, 236 (2004).

    Article  CAS  Google Scholar 

  71. J. Lian, R.C. Ewing, L.M. Wang, and K.B. Helean: Ion-beam irradiation of Gd2Sn2O7 and Gd2Hf2O7 pyrochlore: Bond-type effect. J. Mater. Res. 19, 1575 (2004).

    Article  CAS  Google Scholar 

  72. R.C. Ewing, W.J. Weber, and J. Lian: Nuclear waste disposalpyrochlore (A2B2O7): Nuclear waste form for the immobilization of plutonium and “minor” actinnides. J. Appl. Phys. 95, 5949 (2004).

    Article  CAS  Google Scholar 

  73. S.X. Wang, L.M. Wang, and R.C. Ewing: Nano-scale glass formation in pyrochlore by heavy ion irradiation. J. Non-Cryst. Solids 274, 238 (2000).

    Article  CAS  Google Scholar 

  74. G.R. Lumpkin, K.L. Smith, and M.G. Blackford: Heavy ion irradiation studies of columbite, brannerite, and pyrochlore structure types. J. Nucl. Mater. 289, 177 (2001).

    Article  CAS  Google Scholar 

  75. C. Heremans, B.J. Weunsch, J.K. Stalick, and E. Prince: Fast-ion conducting Y2(ZryTi1-y)2O7 pyrochlores: Neutron rietveld analysis of disorder induced by Zr substitution. J. Solid State Chem. 117, 108 (1995).

    Article  CAS  Google Scholar 

  76. R.C. Ewing and L.M. Wang: Amorphization of zirconolite: Alpha- decay event damage versus krypton ion irradiation. Nucl. Instrum. Methods Phys. Res., Sect. B 65, 319 (1992).

    Article  Google Scholar 

  77. S.X. Wang, G.R. Lumpkin, L.M. Wang, and R.C. Ewing: Ion irradiation-induced amorphization of six zirconolite compositions. Nucl. Instrum. Methods Phys. Res., Sect. B 166(167), 293 (2000).

    Article  Google Scholar 

  78. K.L. Smith, M.G. Blackford, G.R. Lumpkin, and N.J. Zaluzec: Temperature dependence of ion irradiation induced amorphisation of zirconolite, in Scientific Basis for Nuclear Waste Management XXIII, edited by R.W. Smith and D.W. Shoesmith (Mater. Res. Soc. Symp. Proc. 608, Warrendale, PA, 2000) p. 487.

    CAS  Google Scholar 

  79. L.M. Wang, A.Y. Wu, and R.C. Ewing: Amorphization of PLZT material by 1.5 MeV krypton ion irradiation with in situ TEM observation, in Materials Modification by Energetic Atoms and Ions, edited by K.S. Grabowski, S.A. Barnett, S.M. Rossnagel, and K. Wasa (Mater. Res. Soc. Symp. Proc. 268, Pittsburgh, PA, 1992) p. 343.

    CAS  Google Scholar 

  80. A. Meldrum, L.A. Boatner, and R.C. Ewing: Effects of ionizing and displacive irradiation on several perovskite-structure oxides. Nucl. Instrum. Methods Phys. Res., Sect. B 141, 347 (1998).

    CAS  Google Scholar 

  81. A. Meldrum, L.A. Boatner, W.J. Weber, and R.C. Ewing: Amorphization and recrystallization of the ABO3 oxides. J. Nucl. Mater. 300, 242 (2002).

    CAS  Google Scholar 

  82. K.L. Smith, G.R. Lumpkin, M.G. Blackford, and E.R. Vance: Amorphization of perovskite: The effect of composition and preexisting cation vacancies, in Microstructural Processes in Irradiated Materials, edited by S.J. Zinkle, G.E. Lucas, R.C. Ewing, and J.S. Williams (Mater. Res. Soc. Symp. Proc. 540, Warrendale, PA, 1999) p. 323.

    CAS  Google Scholar 

  83. A. Meldrum, L.A. Boatner, L.M. Wang, and R.C. Ewing: Ionbeam- induced amorphization of LaPO4 and ScPO4. Nucl. Instrum. Methods Phys. Res., Sect. B 127(128), 160 (1997).

    Google Scholar 

  84. A. Meldrum, L.A. Boatner, and R.C. Ewing: Displacive radiation effects in the monazite- and zircon-structure orthophosphates. Phys. Rev. B: Condens. Matter 56, 13805 (1997).

    CAS  Google Scholar 

  85. A. Meldrum, S.J. Zinkle, L.A. Boatner, and R.C. Ewing: Heavyion irradiation effects in the ABO4 orthosilicates: Decomposition, amorphization, and recrystallization. Phys. Rev. B: Condens. Matter 59, 3981 (1999).

    CAS  Google Scholar 

  86. W.J. Weber, R. Devanathan, A. Meldrum, L.A. Boatner, R.C. Ewing, and L.M. Wang: The effect of temperature and damage energy on amorphization in zircon, in Microstructural Processes in Irradiated Materials, edited by S.J. Zinkle, G.E. Lucas, R.C. Ewing, and J.S. Williams (Mater. Res. Soc. Symp. Proc. 540, Warrendale, PA, 1999) p. 367.

    CAS  Google Scholar 

  87. A. Meldrum, S.J. Zinkle, L.A. Boatner, and R.C. Ewing: A transient liquid-like phase in the desplacement cascades of zircon, hafnon and thorite. Nature 395, 56 (1998).

    CAS  Google Scholar 

  88. R.K. Eby, R.C. Ewing, and R.C. Birtcher: The amorphization of complex silicates by ion-beam irradiation. J. Mater. Res. 7, 3080 (1992).

    CAS  Google Scholar 

  89. S.X. Wang, L.M. Wang, and R.C. Ewing: Amorphization of Al2SiO5 polymorphs under ion beam irradiation. Nucl. Instrum. Methods Phys. Res., Sect. B 127(128), 186 (1997).

    Google Scholar 

  90. S.X. Wang, L.M. Wang, R.C. Ewing, and R.H. Doremus: Ion beam-induced amorphization in MgO-Al2O3-SiO2. I. Experimental and theoretical basis. J. Non-Cryst. Solids 238, 198 (1998).

    CAS  Google Scholar 

  91. L.M. Wang, W.L. Gong, S.X. Wang, and R.C. Ewing: Comparison of ion-beam irradiation effects in X2YO4 compounds. J. Am. Ceram. Soc. 82, 3321 (1999).

    CAS  Google Scholar 

  92. S.X. Wang, L.M. Wang, R.C. Ewing, and R.H. Doremus: Ion beam-induced amorphization in MgO-Al2O3-SiO2: II. Empirical model. J. Non-Cryst. Solids 238, 214 (1998).

    CAS  Google Scholar 

  93. L.M. Wang, S.X. Wang, W.L. Gong, and R.C. Ewing: Temperature dependence of Kr ion-induced amorphization of mica minerals. Nucl. Instrum. Methods Phys. Res., Sect. B 141, 501 (1998).

    CAS  Google Scholar 

  94. W.J. Weber and L.M. Wang: Effect of temperature and recoil energy spectra on irradiation-induced amorphization in Ca2La8(SiO4) 6O2. Nucl. Instrum. Methods Phys. Res., Sect. B 91, 63 (1994).

    CAS  Google Scholar 

  95. S. Utsunomiya, S. Yudintsev, L.M. Wang, and R.C. Ewing: Ionbeam and electron-beam irradiation of synthetic britholite. J. Nucl. Mater. 322, 180 (2003).

    CAS  Google Scholar 

  96. S. Utsunomiya, L.M. Wang, S. Yudintsev, and R.C. Ewing: Ion irradiation-induced amorphization and nano-crystal formation in garnets. J. Nucl. Mater. 303, 177 (2002).

    CAS  Google Scholar 

  97. A. Hishinuma, K. Nakata, K. Fukai, K. Ameyama, and M. Tokizane: Microstructural development by electron irradiation in mechanical alloying processed Ti-Al intermetallic compounds. J. Nucl. Mater. 199, 167 (1993).

    CAS  Google Scholar 

  98. K. Nanata, K. Fukai, A. Hishinuma, K. Ameyama, and M. Tokizne: Dislocation loop and cavity formation under He-ion irradiation in a Ti-rich TiAl intermetallic compound. J. Nucl. Mater. 202, 39 (1993).

    Google Scholar 

  99. A. Hishinuma: Radiation damage of TiAl intermetallic alloys. J. Nucl. Mater. 239, 267 (1996).

    CAS  Google Scholar 

  100. K. Nakata, K. Fukai, A. Hishinuma, and K. Ameyama: Formation and annealing behavior of defect clusters in electron or He-ion irradiated Ti-rich Ti,ÄìAl alloys. J. Nucl. Mater. 240, 221 (1997).

    CAS  Google Scholar 

  101. M. Song, K. Furuya, T. Tanabe, and T. Noda: High-resolution electron microscopy of -TiAl irradiated with 15 keV helium ions at room temperature. J. Nucl. Mater. 271-272, 200 (1999).

    Google Scholar 

  102. M. Song, K. Furuya, T. Tanabe, and T. Noda: High-resolution electron microscopy study of defect structures in -TiAl irradiated with 15 keV He ions in a high-voltage transmission electron microscope. J. Electron Microsc. 48, 355 (1999).

    CAS  Google Scholar 

  103. C. Jaouen, M.F. Denanot, and M.F. Riviere: In situ study of ion induced amorphization at low temperature in Al3Ti. Nucl. Instrum. Methods Phys. Res., Sect. B 80, 386 (1993).

    Google Scholar 

  104. M. Song, K. Mitsuishi, M. Takeguchi, K. Furuya, T. Tanabe, and T. Noda: Structure of a phase induced with Xe-ion irradiationimplantation in gamma-TiAl. Philos. Mag. Lett. 80, 661 (2000).

    CAS  Google Scholar 

  105. M. Song, K. Mitsuishi, M. Takeguchi, K. Furuya, T. Tanabe, and T. Noda: Phase transformation in the -TiAl alloy induced by Ar ions. J. Nucl. Mater. 307–311, 971 (2002).

    Google Scholar 

  106. E. Johnson, T. Wohlenberg, and W.A. Grant: Crystalline phase transitions produced by ion implantation. Phase Transitions 1, 23 (1979).

    CAS  Google Scholar 

  107. E. Johnson, T. Wohlenberg, W.A. Grant, P. Hansen, and L.T. Chadderton: Ion-induced phase transformation in type 304 austenitic stainless steel by rare-gas ion irradiation. J. Microsc. 116, 77 (1979).

    CAS  Google Scholar 

  108. E. Johnson, U. Littmark, A. Johansen, and C. Christodoulides: Martensite transformation in antimony implanted stainless steel. Philos. Mag. A. 45, 803 (1982).

    CAS  Google Scholar 

  109. E. Johnson, A. Johansen, L. Sarholt-Kristensen, L. Gråbæk, N. Hayashi, and I. Sakamoto: Mössbauer and TEM study of martensitic transformations in ion implanted 17/7 stainless steel. Nucl. Instrum. Methods Phys. Res., Sect. B 19/20, 171 (1987).

    Google Scholar 

  110. N. Hayashi, and T. Takahashi: Irradiation-induced phase transformation in type 304 stainless steel. Appl. Phys. Lett. 41, 1100 (1982).

    Article  CAS  Google Scholar 

  111. N. Hayashi, I. Sakamoto, and T. Takahashi: Phase transformation in helium ion irradiated 316 stainless steel. J. Nucl. Mater. 128/129, 756 (1984).

    Article  Google Scholar 

  112. I. Sakamoto, N. Hayashi, B. Furubayashi, and H. Tanoue: Ioninduced phase transformation in type 304 austenitic stainless steel by rare-gas ion irradiation. J. Appl. Phys. 68, 4508 (1990).

    Article  CAS  Google Scholar 

  113. G. Xie, M. Song, K. Mitsuishi, and K. Furuya: Orientation of to transformation in Xe-implanted austenitic 304 stainless steel. J. Nucl. Mater. 281, 80 (2000).

    Article  CAS  Google Scholar 

  114. E. Johnson: Martensitic transformation in ion implanted stainless steel, in Beam-Solid Interactions: Physical Phenomena, edited by J.A. Knapp, P. Børgesen, R.A. Zuhr (Mater. Res. Soc. Symp. Proc. 157, Pittsburgh, PA, 1990) p. 759.

    CAS  Google Scholar 

  115. E. Johnson, E. Gerritsen, N.G. Chechenin, A. Johansen, L. Sarholt-Kristensen, H.A.A. Keetels, L. Gråbæk, and J. Bohr: Depth distribution analysis of Martensitic transformations in Xe implanted austenitic stainless steel. Nucl. Instrum. Methods Phys. Res., Sect. B 39, 573 (1989).

    Article  Google Scholar 

  116. A. Johansen, E. Johnson, L. Sarholt-Kristensen, S. Steenstrup, E. Gerritsen, C.J.M. Denissen, H. Keetels, J. Politiek, N. Hayashi, and I. Sakamoto: Martensitic transformation and the stress induced by 3 MeV ion implantation in an austenite stainless steel sheet. Nucl. Instrum. Methods Phys. Res., Sect. B 50, 119 (1990).

    Article  Google Scholar 

  117. C.W. Allen: Irradiation-induced grain growth in gold and copper: In situ HVEM studies at 75–300K, in Proceedings of 47th Annual Meeting of the Electron Microscopy Society of America, edited by G.W. Bailey (San Francisco Press Inc., San Francisco, CA, 1989) pp. 644–645.

    Google Scholar 

  118. D.E. Alexander, G.S. Was, and L.E. Rehn: The heat-of-mixing effect on ion-induced grain growth. J. Appl. Phys. 70, 1252 (1991).

    Article  Google Scholar 

  119. A.T. Motta, A. Paesano, Jr., R.C. Birtcher, and L. Amaral: Grain growth in Zr-Fe multilayers under in-situ ion irradiation. Nucl. Instrum. Methods Phys. Res., Sect. B 175/177, 521 (2001).

    Article  Google Scholar 

  120. R.C. Birtcher, S.E. Donnelly, L.E. Rehn, and L. Thomé: Nanocluster formation during ion irradiation of SiO2/Ag/SiO2 multilayers. Nucl. Instrum. Methods Phys. Res., Sect. B 175/177, 40 (2001).

    Google Scholar 

  121. V.V. Sagaradze, S.S. Lapin, M.A. Kirk, and B.N. Goshchitskii: Influence of high-dose Kr+ irradiation on structural evolution and swelling of 16Cr-15Ni-3Mo-1Ti aging steel. J. Nucl. Mater. 274, 287 (1999).

    CAS  Google Scholar 

  122. C.W. Allen, A.W. McCormick, B.J. Kestel, P.M. Baldo, N.J. Zaluzec, and E.L. Rehn: Fabrication of a simple materials system for study of Hg in a stainless steel, in Microstructural Processes in Irradiated Materials, edited by S.J. Zinkle, G.E. Lucas, R.C. Ewing, and J.S. Williams (Mater. Res. Soc. Symp. Proc. 540, Warrendale, PA, 1999) p. 561.

    CAS  Google Scholar 

  123. R.C. Birtcher, S.E. Donnelly, and C. Templier: Evolution of helium bubbles in aluminum during heavy ion irradiation. Phys. Rev. B: Condens. Matter 50, 764 (1994).

    CAS  Google Scholar 

  124. S.E. Donnelly, R.C. Birtcher, C. Templier, and V. Vishnyakov: Response of helium bubbles in gold to displacement cascade damage. Phys. Rev. B 52, 3970 (1995).

    CAS  Google Scholar 

  125. J.F. Ziegler, J.P. Biersack, and U. Littmark: The Stopping and Ranges of Ions in Solids (Pergamon Press, New York, NY, 1985).

    Google Scholar 

  126. K. Ono, K. Arakawa, and R.C. Birtcher: In situ observation of brownian motion and dynamical response to irradiation of helium bubbles in aluminum and copper, in Proc. 2003 TMS Annual Meeting: Electron Microscopy; Its Role In Materials Science, edited by J.R. Weertman, M. Fine, K. Faber, W. King, and P. Liaw, San Diego, CA, 2003; p. 347.

    Google Scholar 

  127. D.M. Follstaedt, S.M. Myers, G.A. Petersen, and J.W. Medernach: Cavity formation and impurity gettering in He-implanted Si. J. Electron. Mater. 25, 151 (1996).

    Google Scholar 

  128. J. Wong-Leung, J.S. Williams, A. Kinomura, Y. Nakano, Y. Hayashi, and D.J. Eaglesham: Diffusion and transient trapping of metals in silicon. Phys. Rev. B: Condens. Matter 59, 7990 (1999).

    CAS  Google Scholar 

  129. V. Raineri, and U. Campisano: Voids in silicon as sink for interstitials. Nucl. Instrum. Methods Phys. Res., Sect. B 120, 56 (1996).

    CAS  Google Scholar 

  130. J.S. Williams, X.F. Zhu, M.C. Ridgway, M.J. Conway, B.C. Williams, F. Fortuna, M-O. Ruault, and H. Bernas: Preferential amorphization and defect annihilation at nanocavities in silicon during ion irradiation. Appl. Phys. Lett. 77, 4286 (2000).

    Google Scholar 

  131. M-O. Ruault, M.C. Ridgway, F. Fortuna, H. Bernas, and J.S. Williams: Shrinkage mechanism of nanocavities in amorphous Si under ion irradiation: An in situ study. Nucl. Instrum. Methods Phys. Res., Sect. B 206, 912 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. C. Birtcher.

Additional information

This author was an editor of this focus issue during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/publications/jmr/policy.html.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Birtcher, R.C., Kirk, M.A., Furuya, K. et al. In situ transmission electron microscopy investigation of radiation effects. Journal of Materials Research 20, 1654–1683 (2005). https://doi.org/10.1557/JMR.2005.0242

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2005.0242

Navigation