Skip to main content
Log in

Dislocation-grain boundary interactions in martensitic steel observed through in situ nanoindentation in a transmission electron microscope

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Dislocation-interface interactions in Fe-0.4 wt% C tempered martensitic steel were studied through in situ nanoindentation in a transmission electron microscope (TEM). Two types of boundaries were imaged in the dislocated martensitic structure: a low-angle (probable) lath boundary and a coherent, high-angle (probable) block boundary. In the case of a low-angle grain boundary, the dislocations induced by the indenter piled up against the boundary. As the indenter penetrated further, a critical stress appeared to have been reached, and a high density of dislocations was suddenly emitted on the far side of the grain boundary into the adjacent grain. In the case of the high-angle grain boundary, the numerous dislocations that were produced by the indentation were simply absorbed into the boundary, with no indication of pileup or the transmission of strain. This surprising observation is interpreted on the basis of the crystallography of the block boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.O. Hall: The deformation and ageing of mild steel. Proc. R. Soc. B 64, 747 (1951).

    Google Scholar 

  2. N.J. Petch: The cleavage strength of polycrystals. J. Iron Steel Inst. 174, 25 (1953).

    CAS  Google Scholar 

  3. J.C.M. Li: Petch relation and grain boundary sources. Trans. ME 227, 239 (1963).

    CAS  Google Scholar 

  4. M.F. Ashby: The deformation of plastically non-homogeneous materials. Philos. Mag. 21, 399 (1970).

    CAS  Google Scholar 

  5. J.W. Morris, Jr.: The influence of grain size on the mechanical properties of steel, in Proc. Int. Symposium on Ultrafine Grained Steels, edited by S. Takaki and T. Maki (Iron and Steel Inst., Tokyo, Japan, 2001), p. 34.

    Google Scholar 

  6. J.J. Hauser and B. Chalmers: The plastic deformation of bicrystals of f.c.c. metals. Acta Metall. 9, 802 (1961).

    CAS  Google Scholar 

  7. W.E. Carrington and D. McLean: Slip nuclei in silicon-iron. Acta Metall. 13, 493 (1965).

    CAS  Google Scholar 

  8. Z. Shen, R.H. Wagoner, and W.A.T. Clark: Dislocation pile-up and grain boundary interactions in 304 stainless steel. Acta Metall. 36, 3231 (1988).

    CAS  Google Scholar 

  9. K.J. Kurzydlowski, R.A. Varin, and W. Zielinski: In situ investigation of the early stages of plastic deformation in an austenitic stainless steel. Acta Metall. 32, 71 (1984).

    CAS  Google Scholar 

  10. T.C. Lee, I.M. Robertson, and H.K. Birnbaum: An in situ transmission electron-microscope deformation study of the slip transfer mechanisms in metals. Metall. Trans. 21A, 2437 (1990).

    CAS  Google Scholar 

  11. T. Maki, K. Tsuzaki, and I. Tamura: The morphology of microstructure composed of lath martensites in steels. Trans. ISIJ 20, 207 (1980).

    CAS  Google Scholar 

  12. H.J. Kim, Y.H. Kim, and J.W. Morris, Jr.: Thermal mechanisms of grain and packet refinement in a lath martensitic steel. ISIJ Int. 38, 1277 (1998).

    CAS  Google Scholar 

  13. T. Ohmura, K. Tsuzaki, and S. Matsuoka: Nanohardness measurement of high-purity Fe-C martensite. Scripta Mater. 45, 889 (2001).

    CAS  Google Scholar 

  14. T. Ohmura, K. Tsuzaki, and S. Matsuoka: Evaluation of the matrix strength of Fe-0.4 wt% C tempered martensite using nanoindentation techniques. Philos. Mag. A 82, 1903 (2002).

    CAS  Google Scholar 

  15. T. Ohmura, T. Hara, and K. Tsuzaki: Relationship between nanohardness and microstructures in high-purity Fe-C as-quenched and quench-tempered martensite. J. Mater. Res. 18, 1465 (2003).

    CAS  Google Scholar 

  16. T. Ohmura, T. Hara, and K. Tsuzaki: Evaluation of temper softening behavior of Fe-C binary martensitic steels by nanoindentation. Scripta Mater. 49, 1157 (2003).

    CAS  Google Scholar 

  17. J.W. Morris, Jr., C.S. Lee, and Z. Guo: The nature and consequences of coherent transformations in steel. ISIJ Int. 43, 410 (2003).

    CAS  Google Scholar 

  18. Z. Guo, C.S. Lee, and J.W. Morris, Jr.: On coherent transformations in steel. Acta Mater. 52, 5511 (2004).

    CAS  Google Scholar 

  19. A.M. Minor, E.A. Stach, and J.W. Morris, Jr.: Quantitative in situ nanoindentation in an electron microscope. Appl. Phys. Lett. 79, 1625 (2001).

    CAS  Google Scholar 

  20. E.A. Stach, T. Freeman, A.M. Minor, D.K. Owen, J. Cumings, M.A. Wall, T. Chraska, R. Hull, J.W. Morris, Jr., A. Zettl, and U. Dahmen: Development of a nanoindenter for in situ transmission electron microscopy. Microsc. Microanal. 7, 507 (2001).

    CAS  Google Scholar 

  21. A.R. Marder and G. Krauss: The morphology of martensite in iron-carbon alloys. Trans. ASM 60, 651 (1967).

    CAS  Google Scholar 

  22. J.M. Marder and A.R. Marder: The morphology of iron-nickel massive martensite. Trans. ASM 62, 1 (1969).

    CAS  Google Scholar 

  23. S. Morito, H. Tanaka, R. Konishi, T. Furuhara, and T. Maki: The morphology and crystallography of lath martensite in Fe-C alloys. Acta Mater. 51, 1789 (2003).

    CAS  Google Scholar 

  24. Z. Guo: The limit of strength and toughness of steel. Ph.D. Thesis, Department of Materials Science, Univ. of California, Berkeley, CA (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohmura, T., Minor, A.M., Stach, E.A. et al. Dislocation-grain boundary interactions in martensitic steel observed through in situ nanoindentation in a transmission electron microscope. Journal of Materials Research 19, 3626–3632 (2004). https://doi.org/10.1557/JMR.2004.0474

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2004.0474

Navigation