Skip to main content
Log in

Anisotropies in the electrical properties of rod-like aggregates of liquid crystalline phthalocyanines: Direct current conductivities and field-effect mobilities

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The direct current (dc) conductivities and organic field-effect transistor (OFET) characteristics of a class of octa-substituted liquid crystalline (discotic mesophase) phthalocyanines (Pcs) are discussed. These molecules self-organize into columnar aggregates with large coherence lengths (up to approximately 300 nm). Langmuir–Blodgett films of these molecules were horizontally transferred to either interdigitated microelectrodes (IME) or OFET substrates, so that current flow could be measured either parallel or perpendicular to the column axis. Twenty-eight bilayer films of these Pcs on the IME substrates showed anisotropies in dc conductivity up to 50:1, whereas similar Pc films showed anisotropies in field effect mobilities of approximately 10:1, for a variety of W/L ratios (source/drain dimensions and spacing). Field-effect mobilities of 1 to 5 × 10-6 cm2·V-1·s-1 were determined from OFET measurements, along the Pc column axis, whereas charge mobilities measured from the space charge limited current regime on the IME substrates were in the range of 10-4 cm2·V-1·s-1. Conductive tip atomic force microscopy measurements on the apprximately 500-nm length scale showed that the conductivity anisotropy can be as high as 1000:1 when the Pc columns are intimately contacted to an adjacent Au bond pad.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A.M. van de Craats and J.M. Warman: Adv. Mater. 13, 130 (2001).

  2. A.M. van de Craats, J.M. Warman, J.M.A. Fechtenkotter, J.D. Brand, M.A. Harbison, and K. Mullen: Adv. Mater. 11, 1469 (1999).

    Article  Google Scholar 

  3. A.M. van de Craats, J.M. Warman, K. Mullen, Y. Geerts, and J.D. Brand: Adv. Mater. 10, 36 (1998).

    Article  Google Scholar 

  4. A.M. van de Craats, L.D.A. Siebbeles, I. Bleyl, D. Haarer, Y.A. Berlin, A.A. Zharikov, and J.M. Warman: J. Phys. Chem. B 102, 9625 (1998).

    Article  Google Scholar 

  5. A.M. van de Craats, J.M. Warman, H. Hasebe, R. Naito, and K. Ohta: J. Phys. Chem. B 101, 9224 (1997).

    Article  Google Scholar 

  6. L. Schmidt-Mende, M. Watson, K. Mullen, and R.H. Friend: Molecular Crystals and Liquid Crystals 396, 73 (2003).

    Article  CAS  Google Scholar 

  7. K. Petritsch, J.J. Dittmer, E.A. Marseglia, R.H. Friend, A. Lux, G.G. Rozenberg, S.C. Moratti, and A.B. Holmes: Sol. Energy Mater. Sol. Cells 61, 63 (2000).

    Article  CAS  Google Scholar 

  8. P. Samori, N. Severin, K. Mullen, and J.P. Rabe: Adv. Mater. 12, 579 (2000).

    Article  CAS  Google Scholar 

  9. H. Eichhorn: J. Porphyrins Phthalocyanines 4, 88 (2000).

  10. A. Tracz, J.K. Jeszka, M.D. Watson, W. Pisula, K. Mullen, and T. Pakula: J. Am. Chem. Soc. 125, 1682 (2003).

    Article  CAS  Google Scholar 

  11. O. Bunk, M.M. Nielsen, T.I. Solling, A.M. van de Craats, and N. Stutzmann: J. Am. Chem. Soc. 125, 2252 (2003).

    Article  CAS  Google Scholar 

  12. S.J. Tans, R.G. Miedema, L.J. Geerligs, C. Dekker, J. Wu, D. Neher, and G. Wegner: Nanotechnology 14, 1043 (2003).

    Article  CAS  Google Scholar 

  13. P. Gattinger, H. Rengel, D. Neher, M. Gurka, M. Buck, A.M. van de Craats, and J.M. Warman: J. Phys. Chem. B 103, 3179 (1999).

    Article  CAS  Google Scholar 

  14. R. Silerova, L. Kalvoda, D. Neher, A. Ferencz, J. Wu, and G. Wegner: Chem. Mater. 10, 2284 ((1998)).

  15. M.A. Fox, J.V. Grant, D. Melamed, D.T. Torimoto, C.Y. Liu, and A.J. Bard: Chem. Mater. 10, 1771 (1998).

    Article  CAS  Google Scholar 

  16. C-Y. Liu and A.J. Bard: Acc. Chem. Res. 32, 235 (1999).

  17. C.L. Donley, W. Xia, B.A. Minch, R.A.P. Zangmeister, A.S. Drager, K. Nebesny, D.F. O’Brien, and N.R. Armstrong: Langmuir 19, 6512 (2003).

    Article  CAS  Google Scholar 

  18. R.A.P. Zangmeister, D.F. O’Brien, and N.R. Armstrong: Adv. Func. Mater. 12, 179 (2002).

    Article  CAS  Google Scholar 

  19. R.A.P. Zangmeister, P.E. Smolenyak, A.S. Drager, D.R. O’Brien, and N.R. Armstrong: Langmuir 17, 7071 (2001).

    Article  CAS  Google Scholar 

  20. P. Smolenyak, R. Peterson, K. Nebesny, M. Torker, D.F. O’Brien, and N.R. Armstrong: J. Am. Chem. Soc. 121, 8628 (1999).

    Article  CAS  Google Scholar 

  21. L. Torsi, A. Dodabalapur, L.J. Rothberg, A.W.P. Fung, and H.E. Katz: Science 272, 1462 (1996).

    Article  CAS  Google Scholar 

  22. Z. Bao, A.J. Lovinger, and A. Dodabalapur: Appl. Phys. Lett. 69, 3066 (1996).

    Article  CAS  Google Scholar 

  23. H.E. Katz and Z. Bao: J. Phys. Chem. B 104, 671 (2000).

  24. J.A. Rogers, A. Dodabalapur, Z. Bao, and H.E. Katz: Appl. Phys. Lett. 75, 1941 (1999).

    Article  Google Scholar 

  25. A.B. Chwang and C.D. Frisbie: J. Appl. Phys. 90, 1342 (2001).

  26. T.W. Kelley and C.D. Frisbie: J. Phys. Chem. B 105, 4538 (2001).

  27. K. Seshadri and C.D. Frisbie: Appl. Phys. Lett. 78, 993 (2001).

  28. A.B. Chwang and C.D. Frisbie: J. Phys. Chem. B 104, 12202 (2000).

  29. E.L. Granstrom and C.D. Frisbie: J. Phys. Chem. B 103, 8842 (1999).

  30. C.D. Dimitrakopoulos and P.R.L. Malenfant: Adv. Mater. 14, 99 (2002).

  31. G. Horowitz: Adv. Mater. 10, 365 (1998).

  32. G. Horowitz, R. Hajlaoui, H. Bouchriha, R. Bourguiga, and M. Hajlaoui: Adv. Mater. 10, 923 (1998).

    Article  CAS  Google Scholar 

  33. H. Klauk and T.N. Jackson: Solid State Technol. 43, 63 (2000).

  34. H. Klauk, G. Schmid, W. Radlik, W. Weber, L.S. Zhou, C.D. Sheraw, J.A. Nichols, and T.N. Jackson: Solid-State Electron. 47, 297 (2003).

    Article  CAS  Google Scholar 

  35. Y. Zhang, J.R. Petta, S. Ambily, Y. Shen, D.C. Ralph, and G.G. Malliaras: Adv. Mater. 15, 1632 (2003).

    Article  CAS  Google Scholar 

  36. A.S. Drager and D.F. O’Brien: J. Org. Chem. 65, 2257 (2000).

  37. R.A.P. Zangmeister: Ph.D. Thesis, University of Arizona (2001).

  38. C.L. Donley: Ph.D. Thesis, University of Arizona (2003).

  39. F. Gutman: Organic Semiconductors (John Wiley & Sons, New York, 1967).

  40. J.D. Wright, Molecular Crystals (Cambridge University Press, New York, 1995), pp. 144–158.

  41. J. Piris, M.G. Debije, N. Stutzmann, A.M. van de Craats, M.D. Watson, K. Müllen, and J.M. Warman: Adv. Mater. 15, 1736 (2003).

    Article  CAS  Google Scholar 

  42. J. Simon and J.-J. André, Molecular Semiconductors (Springer-Verlag, New York, 1985), pp. 53–59).

  43. CRC Handbook of Chemistry and Physics, 71st ed. (CRC Press, Boca Raton, 1990).

  44. P.V. Necliudov, M.S. Shur, D.J. Gundlach, and T.N. Jackson: Solid-State Electron. 47, 259 (2003).

    Article  CAS  Google Scholar 

  45. L. Bürgi, H. Sirringhaus, and R.H. Friend: Appl. Phys. Lett. 80, 2913 (2002).

    Article  Google Scholar 

  46. E.J. Meijer, G.H. Gelinck, E. van Veenendaal, B-H. Huisman, D.M. de Leeuw, and T.M. Klapwijk: Appl. Phys. Lett. 82, 4576 (2003).

    Article  CAS  Google Scholar 

  47. J.W. Pankow, C. Arbour, J-P. Dodelet, G.E. Collins, and N.R. Armstrong: J. Phys. Chem. 97, 8485 (1993).

    Article  CAS  Google Scholar 

  48. I. Zhivkov, S. Nešpůrek, and F. Schauer: Adv. Mater. Opt. Electron 9, 175 (1999).

    Article  CAS  Google Scholar 

  49. A. Ahmad and R.A. Collins: Thin Solid Films 217, 75 (1992).

  50. A. Ferencz, N.R. Armstrong, and G. Wegner: Macromolecules 27, 1517 (1994).

    Article  CAS  Google Scholar 

  51. H.E. Katz, J. Johnson, A.J. Lovinger, and W.J. Li: J. Am. Chem. Soc. 122, 7787 (2000).

    Article  CAS  Google Scholar 

  52. H. Klauk, M. Halik, U. Zschieschang, G. Schmid, W. Radlik, and W. Weber: J. Appl. Phys. 92, 5259 (2002).

    Article  CAS  Google Scholar 

  53. T.W. Kelley, L.D. Boardman, R.D. Dunbar, D.V. Muyres, M.J. Pellerite, and T.P. Smith: J. Phys. Chem. B 107, 5877 (2003).

    Article  CAS  Google Scholar 

  54. Y.Y. Lin, D.J. Gundlach, S.F. Nelson, and T.N. Jackson: IEEE Elect. Dev. Lett. 18, 606 (1997).

    Article  CAS  Google Scholar 

  55. A. Salleo, M.L. Chabinyc, M.S. Yang, and R.A. Street: Appl. Phys. Lett. 81, 4383 (2002).

    Article  CAS  Google Scholar 

  56. G.Z. Wang, Y. Luo, and P.H. Beton: Appl. Phys. Lett. 83, 3108 (2003).

    Article  CAS  Google Scholar 

  57. M. Mushrush, A. Facchetti, M. Lefenfeld, H.E. Katz, and T.J. Marks: J. Am. Chem. Soc. 125, 9414 (2003).

    Article  CAS  Google Scholar 

  58. H. Meng, J. Zheng, A.J. Lovinger, B.C. Wang, P.G. Van Patten, and Z.N. Bao: Chem. Mater. 15, 1778 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carrie L. Donley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donley, C.L., Zangmeister, R.A.P., Xia, W. et al. Anisotropies in the electrical properties of rod-like aggregates of liquid crystalline phthalocyanines: Direct current conductivities and field-effect mobilities. Journal of Materials Research 19, 2087–2099 (2004). https://doi.org/10.1557/JMR.2004.0278

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2004.0278

Navigation