Skip to main content
Log in

Glass formation in a (Ti, Zr, Hf)–(Cu, Ni, Ag)–Al high-order alloy system by mechanical alloying

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this work, glass formation under high-energy ball milling was investigated for a (Ti0.33Zr0.33Hf0.33)50(Ni0.33Cu0.33Ag0.33)40Al10 high-order alloy system with equiatomic substitution for early and late transition-metal contents. For comparison, an amorphous alloy ribbon with the same composition was prepared using the melt-spinning method as well. Structural features of the samples were characterized using x-ray diffraction, transmission electron microscopy, and differential scanning calorimetry. Mechanical alloying resulted in a glassy alloy similar to that obtained by melt spinning. However, the glass formation was incomplete, and a small amount of unreacted crystallites smaller than 30 nm in size still remained in the final ball-milled product. Like the melt-spun glass, the ball-milled glassy alloy also exhibited a distinct glass transition and a wide supercooled liquid region of about 80 K. Crystallization of this high-order glassy alloy proceeded through two main stages. After the primary nanocrystallization was completed, the remaining amorphous phase also behaved as a glass, showing a detectable glass transition and a large supercooled liquid region of about 100 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Seidel, J. Eckert, and L. Schultz, J. Appl. Phys. 77, 5446 (1995).

    Article  CAS  Google Scholar 

  2. 2 M. Seidel, J. Eckert, E. Zueco-Rodrigo, and L. Schultz, J. Non-Cryst. Solids 205–207, 514 (1996).

    Article  Google Scholar 

  3. N. Schlorke, J. Eckert, and L. Schultz, Mater. Sci. Forum 269–272, 761 (1998).

    Article  Google Scholar 

  4. N. Schlorke, J. Eckert, and L. Schultz, Mater. Sci. Eng. A 226–228, 425 (1997).

    Article  Google Scholar 

  5. A. Sagel, R.K. Wunderlich, J.H. Perepezko, and H-J. Fecht, Appl. Phys. Lett. 70, 580 (1997)

    Article  CAS  Google Scholar 

  6. A. Sagel, R.K. Wunderlich, and H-J. Fecht, Mater. Lett. 33, 123 (1997).

    Article  CAS  Google Scholar 

  7. I. Börner and J. Eckert, Scripta Mater. 45, 237 (2001).

    Article  Google Scholar 

  8. L.C. Zhang and J. Xu, Mater. Sci. Forum 386–388, 47 (2002).

    Article  Google Scholar 

  9. L.C. Zhang, J. Xu, and E. Ma, J. Mater. Res. 17, 1743 (2002).

    Article  CAS  Google Scholar 

  10. M.S. El-Eskandarany and A. Inoue, Mater. Trans. 43, 1422 (2002).

    Article  CAS  Google Scholar 

  11. Y. Kawamura, H. Kato, A. Inoue, and T. Masumoto, Appl. Phys. Lett. 67, 2008 (1995).

    Article  CAS  Google Scholar 

  12. Y. Kawamura, H. Kato, A. Inoue, and T. Masumoto, Int. J. Powder Metall. 33, 50 (1997).

    CAS  Google Scholar 

  13. D.J. Sordelet, E. Rozhkova, P. Huang, P.B. Wheelock, M.F. Besser, M.J. Kramer, M. Calvo-Dahlborg, and U. Dahlborg, J. Mater. Res. 17, 186 (2002).

    Article  CAS  Google Scholar 

  14. T. Itoi, T. Takamizawa, Y. Kawamura, and A. Inoue, Scripta Mater. 45, 1131 (2001).

    Article  CAS  Google Scholar 

  15. S. Ishihara, W. Zhang, and A. Inoue, Scripta Mater. 47, 231 (2002).

    Article  CAS  Google Scholar 

  16. P-Y. Lee, S-S. Hung, J-T. Hsieh, Y-L. Lin, and C-K. Lin, Intermetallics 10, 1277 (2002).

    Article  CAS  Google Scholar 

  17. M.H. Lee, D.H. Bae, W.T. Kim, D.H. Kim, E. Rozhkova, P.B. Wheelock, and D.J. Sordelet, J. Non-Cryst. Solids 315, 89 (2003).

    Article  CAS  Google Scholar 

  18. J. Robertson, J-T. Im, I. Karaman, K.T. Hartwig, and I.E. Anderson, J. Non-Cryst. Solids 317, 144 (2003).

    Article  CAS  Google Scholar 

  19. B. Cantor, K.B. Kim, and P.J. Warren, Mater. Sci. Forum 386–388, 27 (2002).

    Article  Google Scholar 

  20. K.B. Kim, P.J. Warren, and B. Cantor, J. Non-Cryst. Solids 317, 17 (2003).

    Article  CAS  Google Scholar 

  21. L. Ma, L. Wang, T. Zhang, and A. Inoue, Mater. Trans. 43, 277 (2002).

    Article  CAS  Google Scholar 

  22. D. Basset, P. Matteazzi, and F. Miani, Mater. Sci. Eng. A 174, 71 (1994).

    Article  Google Scholar 

  23. T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, Binary Alloy Phase Diagrams, 2nd ed. (ASM Inetrnational, Materials Park, OH, 1990).

  24. J.C. Gachon, M. Dirand, and J. Hertz, J. Less-Comm. Met. 92, 307 (1983).

    Article  CAS  Google Scholar 

  25. P.Y. Lee and C.C. Koch, J. Mater. Sci. 23, 2837 (1988).

    Article  CAS  Google Scholar 

  26. Z. Altounian, E. Batalla, J.O. Strom-Olsen, and J.L. Walter, J. Appl. Phys. 61, 149 (1987).

    Article  CAS  Google Scholar 

  27. G.K. Williamson and W.H. Hall, Acta Metall. 1, 22 (1953).

    Article  CAS  Google Scholar 

  28. A. Inoue, H. Tomioka, and T. Masumoto, J. Mater. Sci. 18, 153 (1983).

    Article  CAS  Google Scholar 

  29. T. Gloriant, M. Gich, S. Suriñach, M.D. Baró, and A.L. Greer, Mater. Sci. Forum 343–346, 365 (2000).

    Article  Google Scholar 

  30. A. Weeber and H. Bakker, Physica B 153, 93 (1988).

    Article  CAS  Google Scholar 

  31. C.C. Koch, Mater. Sci. Forum 88–90, 243 (1992).

    Article  Google Scholar 

  32. L. Schultz and J. Eckert, in Topics in Applied Physics, edited by H. Beck and H-J. Güntherodt (Springer-Verlag Berlin Heidelberg, Germany, 1994), Vol. 72, p. 69.

  33. C. Suryanarayana, Prog. Mater. Sci. 46, 1 (2001).

    Article  CAS  Google Scholar 

  34. R.B. Schwarz, R.R. Petrich, and C.K. Saw, J. Non-Cryst. Solids 76, 281 (1985).

    Article  CAS  Google Scholar 

  35. P. Schumacher, M.H. Enayati, and B. Cantor, Mater. Sci. Forum 312–314, 351 (1999).

    Article  Google Scholar 

  36. R.B. Schwarz, Mater. Sci. Forum 269–272, 665 (1998).

    Article  Google Scholar 

  37. R.B. Schwarz and R.R. Petrich, J. Less-Comm. Met. 140, 171 (1988).

    Article  CAS  Google Scholar 

  38. Y. Chen, M. Bibole, R. Le Hazif, and G. Martin, Phys. Rev. B 48, 14 (1993).

    Article  CAS  Google Scholar 

  39. D. Galy, L. Chaffron, and G. Martin, J. Mater. Res. 12, 688 (1997).

    Article  CAS  Google Scholar 

  40. P.Y. Lee and C.C. Koch, Appl. Phys. Lett. 50, 1578 (1987).

    Article  CAS  Google Scholar 

  41. M. Seidel, J. Eckert, I. Bächer, M. Reibold, and L. Schultz, Acta Mater. 48, 3657 (2000).

    Article  CAS  Google Scholar 

  42. A. Sagel, N. Wanderka, R.K. Wunderlich, P. Schubert-Bischoff, and H-J. Fecht, Scripta Mater. 38, 163 (1998).

    Article  CAS  Google Scholar 

  43. P. Bellon and R.S. Averback, Phys. Rev. Lett. 74, 1819 (1995).

    Article  CAS  Google Scholar 

  44. H.W. Sheng, G. Wilde, and E. Ma, Acta Mater. 50, 475 (2002).

    Article  CAS  Google Scholar 

  45. D. Lee, J. Cheng, M. Yuan, C.N.J. Wagner, and A.J. Ardell, J. Appl. Phys. 64, 4772 (1988).

    Article  CAS  Google Scholar 

  46. R. Brüning, Z. Altounian, and J.O. Strom-Olsen, Mater. Sci. Eng. 97, 317 (1988).

    Article  Google Scholar 

  47. O. Haruyama, A. Kuroda, and N. Asahi, J. Non-Cryst. Solids 150, 483 (1992).

    Article  CAS  Google Scholar 

  48. L.C. Damonte, L.A. Mendoza-Zélis, S. Deledda, and J. Eckert, Mater. Sci. Eng. A 343, 194 (2003).

    Article  Google Scholar 

  49. D.J. Sordelet, E. Rozhkova, M.F. Besser, and M.J. Kramer, Appl. Phys. Lett. 80, 4735 (2002).

    Article  CAS  Google Scholar 

  50. M.S. El-Eskandarany, J. Saida, and A. Inoue, Acta Mater. 50, 2725 (2002).

    Article  CAS  Google Scholar 

  51. J. Saida, M. Mastushita, and A. Inoue, J. Appl. Phys. 90, 4717 (2001).

    Article  CAS  Google Scholar 

  52. T. Zhang, A. Inoue, S. Chen, and T. Masumoto, Mater. Trans. JIM 33, 143 (1992).

    Article  CAS  Google Scholar 

  53. A. Inoue, S. Chen, and T. Masumoto, Mater. Sci. Eng. A 179/180, 346 (1994).

    Article  Google Scholar 

  54. E. Matsubara, K. Sugiyama, A.H. Shinohara, Y. Waseda, A. Inoue, T. Zhang, and T. Masumoto, Mater. Sci. Eng. A 179/180, 444 (1994).

    Article  Google Scholar 

  55. J.B. Rubin and R.B. Schwarz, Phys. Rev. B 50, 795 (1994).

    Article  CAS  Google Scholar 

  56. P.J. Desré, Mater. Trans. JIM 38, 583 (1997).

    Article  Google Scholar 

  57. A.L. Greer, Nature 366, 303 (1993).

    Article  Google Scholar 

  58. U. Köster, J. Meinhardt, S. Roos, and A. Rudiger, Mater. Sci. Forum 225–227, 311 (1996).

    Article  Google Scholar 

  59. M. Baricco, S. Spriano, I. Chang, M.I. Petrzhik, and L. Battezzati, Mater. Sci. Eng. A 304–306, 305 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. C. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L.C., Shen, Z.Q. & Xu, J. Glass formation in a (Ti, Zr, Hf)–(Cu, Ni, Ag)–Al high-order alloy system by mechanical alloying. Journal of Materials Research 18, 2141–2149 (2003). https://doi.org/10.1557/JMR.2003.0300

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2003.0300

Navigation