Skip to main content
Log in

Decomposition of NiMn2O4 spinels

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Thermal analysis and x-ray diffraction have confirmed that single-phase, cubic-spinel-structured NiMn2O4 (2:1 Mn2O3:NiO) begins to decompose into a rocksalt and a second spinel-structured phase above 907 °C. The decomposition product in samples air-quenched from 900 and 1200 °C was therefore investigated using transmission electron microscopy. Samples quenched from 900 °C (below decomposition temperature) did not show the expected single-phase microstructure, but instead grains contained nanoregions of a lenticular fringe contrast. Samples quenched from 1050 to 1200 °C were generally composed of Mn-rich spinel grains in addition to grains containing Mn-rich spinel precipitates (30–50 nm) surrounded by a Ni-rich rocksalt matrix. As temperature increased, the spinel grains and precipitates became clearly tetragonal, exhibiting a ferroelastic domain structure arising from a cooperative Jahn–Teller distortion. A decomposition mechanism based on the degree of inversion is proposed to explain these microstructures. Slow cooling samples from 1250 °C resulted in partial recomposition, leading to a microstructure principally composed of cubic spinel and regions of much smaller spinel structured precipitates (50–120 nm) in a rocksalt structured matrix. The slow-cooled samples showed a larger increase in resistance over time than single-phase samples did when held at 400 °C. X-ray diffraction measurements carried out before and after electrical characterization showed a reduction in the amount of rocksalt structured material present in slow-cooled samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.G. Larson, R.J. Arnott, and D.G. Wickham, J. Phys. Chem. Solids 23, 1771 (1962).

    Article  CAS  Google Scholar 

  2. B. Gillot, M. Kharroubi, R. Metz, R. Legros, and A. Rousset, Solid State Ionics 44, 3–4, 275 (1991).

    Article  Google Scholar 

  3. D.F. Shriver, P.W. Atkins, and C.H. Langford, Inorganic Chemistry (Oxford University Press, Oxford, U.K., 1992).

    Google Scholar 

  4. J.J. Couderc, S. Fritsch, M. Brieu, G. Vanderschaeve, M. Fagot, and A. Rousset, Philos. Mag. B 70, 1077 (1994).

    Article  CAS  Google Scholar 

  5. C. Metzmacher, I.M. Reaney, and W. Groen, Phys. Status Solidi A 181, 369 (2000).

    Article  CAS  Google Scholar 

  6. A.Ya. Fishman, M.A. Ivanov, V.Ya. Mitrofanov, and A.A. Shemyakov, Phys. Status Solidi B 160, 153 (1990).

    Article  Google Scholar 

  7. V.A.M. Brabers and J.C.J. Terhell, Phys. Status Solidi A 6, 325 (1982).

    Article  Google Scholar 

  8. E.J. Verwey, P.W. Haayman, F.C. Romeyn, and G.W. van Oosterhout, Philips Res. Rep. 5, 173 (1950).

    CAS  Google Scholar 

  9. S.E. Dorris and T.O. Mason, J. Am. Ceram. Soc. 71, 379 (1988).

    Article  CAS  Google Scholar 

  10. W.A. Groen, V. Zaspalis, and S. Schuurman, J. Mater. Sci. Lett. 18(15), 1233 (1999).

    Article  CAS  Google Scholar 

  11. B. Boucher, R. Buhl, and M. Perrin, Acta Crystallogr. B 25, 2326 (1969).

    Article  CAS  Google Scholar 

  12. A. Feltz, J. Toepfer, and F. Schirrmeister, J. Eur. Ceram. Soc. 9, 187 (1992).

    Article  CAS  Google Scholar 

  13. D.G. Wickham, J. Inorg. Nucl. Chem. 26, 1369 (1963).

    Article  Google Scholar 

  14. J. Jung, J. Topfer, J. Murbe, and A. Feltz, J. Eur. Cer. Soc. 6, 351 (1990).

    Article  CAS  Google Scholar 

  15. G.D.C. Csete de Gyorgyfalva, I.M. Reaney, C. Metzmacher, and W. Groen, Proc. EMAG 99. (Inst. Phys. Conf. Series 161, London, U.K., 1999), pp. 529–532.

    Google Scholar 

  16. G.D.C. Csete de Györgyfalva, A.N. Nolte, and I.M. Reaney, J. Eur. Ceram. Soc. 19, 857 (1999).

    Article  Google Scholar 

  17. H. Schmalzried, Solid State Reactions, 2nd ed. (Verlag Chemie, Weinheim, Germany, 1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Györgyfalva, G.D.C.C., Reaney, I.M. Decomposition of NiMn2O4 spinels. Journal of Materials Research 18, 1301–1308 (2003). https://doi.org/10.1557/JMR.2003.0179

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2003.0179

Navigation