Skip to main content
Log in

Mechanically Alloyed Amorphous Ti50(Cu0.45Ni0.55)44–xAlxSi4B2 Alloys with Supercooled Liquid Region

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A high-energy ball milling procedure has been developed to produce amorphous alloys in Ti50(Cu0.45Ni0.55)44−xAlxSi4B2 (x= 0, 4, 8, 12) powder mixtures. The milling products were characterized using x-ray diffraction, differential scanning calorimetry, and transmission electron microscopy. The Ti-based amorphous alloy powders prepared through this solid-state process exhibit a well-defined glass transition and a supercooled liquid region (ΔTx =64 K) close to the largest achieved so far for Ti-based undercooled melts. The substitution of Al for Cu and Ni has beneficial effects on stabilizing the supercooled liquid. Residual nanocrystals of the αTi structure are uniformly dispersed in the amorphous matrix. The composite alloy powders offer the potential for consolidation in the supercooled liquid region to bulk lightweight amorphous alloys and the possibility to attain desirable mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.L. Johnson, Mater. Res. Soc. Bull. 24(10), 42 (1999).

    Article  CAS  Google Scholar 

  2. A. Inoue, Acta Mater. 48, 279 (2000).

    Article  CAS  Google Scholar 

  3. T. Zhang and A. Inoue, Mater. Trans. JIM 39, 1001 (1998).

    Article  CAS  Google Scholar 

  4. A. Inoue, K. Amiya, A. Katsuya, and T. Masumoto, Mater. Trans. JIM 36, 858 (1995).

    Article  CAS  Google Scholar 

  5. T. Zhang and A. Inoue, Mater. Trans. JIM 40, 301 (1999).

    Article  CAS  Google Scholar 

  6. T. Zhang and A. Inoue, Mater. Sci. Eng. A 304–306, 771 (2001).

    Article  Google Scholar 

  7. N. Nishiyama and A. Inoue, Mater. Trans. JIM 38, 464 (1997).

    Article  CAS  Google Scholar 

  8. A. Inoue and T. Zhang, Mater. Trans. JIM 37, 185 (1996).

    Article  CAS  Google Scholar 

  9. W.L. Johnson, Mater. Sci. Forum 225–227, 35 (1996).

    Article  Google Scholar 

  10. Y. Kawamura, H. Kato, A. Inoue, and T. Masumoto, Int. J. Powder Metall. 33, 50 (1997).

    CAS  Google Scholar 

  11. Y. Kawamura, H. Kato, A. Inoue, and T. Masumoto, Appl. Phys. Lett. 67, 2008 (1995).

    Article  CAS  Google Scholar 

  12. H. Kato, Y. Kawamura, A. Inoue, and T. Masumoto, Mater. Sci. Eng. A 226–228, 458 (1997).

    Article  Google Scholar 

  13. K. Amiya, N. Nishiyama, A. Inoue, and T. Masumoto, Mater. Sci. Eng. A 179–180, 692 (1994).

    Article  Google Scholar 

  14. M. Seidel, J. Eckert, H-D. Bauer, and L. Schultz, Mater. Sci. Forum 225–227, 119 (1996).

    Article  Google Scholar 

  15. D.J. Sordelet, E. Rozhkova, P. Huang, P.B. Wheelock, Besser, M.J. Kramer, M. Calvo-Dahlborg, and U. Dahlborg, Mater. Res. 17, 186 (2002).

    Article  CAS  Google Scholar 

  16. H. Choi-Yim and W.L. Johnson, Appl. Phys. Lett. 71, 3808 (1997).

    Article  CAS  Google Scholar 

  17. R.D. Conner, H. Choi-Yim, and W.L. Johnson, J. Mater. Res. 14, 3292 (1999).

    Article  CAS  Google Scholar 

  18. H. Choi-Yim, R. Busch, U. Köster, and W.L. Johnson, Acta Mater. 47, 2455 (1999).

    Article  CAS  Google Scholar 

  19. M. Seidel, J. Eckert, and L. Schultz, J. Appl. Phys. 77, 5446 (1995).

    Article  CAS  Google Scholar 

  20. M. Seidel, J. Eckert, I. Bächer, M. Reibold, and L. Schultz, Acta Mater. 48, 3657 (2000).

    Article  CAS  Google Scholar 

  21. A. Sagel, R.K. Wunderlich, and H.J. Fecht, Mater. Lett. 33, 123 (1997).

    Article  CAS  Google Scholar 

  22. R.B. Schwarz and R.R. Petrich, J. Less-Common Met. 140, 171 (1988).

    Article  CAS  Google Scholar 

  23. L. Battezzati, S. Enzo, L. Schiffini, and G. Cocco, J. Less-Common Met. 145, 301 (1988).

    Article  CAS  Google Scholar 

  24. C. Politis and W.L. Johnson, J. Appl. Phys. 60, 1147 (1986).

    Article  CAS  Google Scholar 

  25. M. Baricco, L. Battezzati, I. Soletta, L. Schiffini, and N. Cowlam, Mater, Sci. Eng. A 134, 1398 (1991).

    Article  Google Scholar 

  26. B.S. Murty, S. Ranganathan, and M. Mohan Rao, Mater. Sci. Eng. A 149, 231 (1992).

    Article  Google Scholar 

  27. K.B. Kim, S. Yi, S.H. Kim, W.T. Kim, and D.H. Kim, Mater. Sci. Eng. A 300, 148 (2001).

    Article  Google Scholar 

  28. L.C. Zhang and J. Xu, Mater. Sci. Forum 386–388, 47 (2002).

    Article  Google Scholar 

  29. K. Amiya, N. Nishiyama, A. Inoue, and T. Masumoto, Mater. Sci. Eng. A 179–180, 692 (1994).

    Article  Google Scholar 

  30. Y-C. Kim, S. Yi, W.T. Kim, and D-H. Kim, Mater. Sci. Forum 360–362, 67 (2001).

    Article  Google Scholar 

  31. Y.C. Kim, S. Yi, W.T. Kim, and D.H. Kim, in Supercooled Liquid, Bulk Glassy and Nanocrystalline States of Alloys, edited by A. Inoue, A.R. Yavari, W.L. Johnson, and R.H. Dauskardt (Mater. Res. Soc. Symp. Proc. 644, Warrendale, PA, 2001), p. L4.9.1.

    Google Scholar 

  32. U. Köster, Z. Metallkde. 75, 691 (1984).

    Google Scholar 

  33. L. Azaroff and M.J. Buerger, The Powder Method in X-Ray Crystallography (McGraw-Hill, New York, 1958), p. 238.

    Google Scholar 

  34. Powder Deffraction File No. 18–899, International Centre for Diffraction Data, Newton Square, PA.

  35. E. Bonetti, G. Cocco, S. Enzo, and G. Valdré, Mater. Sci. Technol. 6, 1258 (1990).

    Article  CAS  Google Scholar 

  36. E. Bonetti, G. Valdré, S. Enzo, and G. Cocco, J. Alloys Compd. 194, 331 (1993).

    Article  CAS  Google Scholar 

  37. G. Cocco, I. Soletta, L. Battezzati, M. Baricco, and S. Enzo, Philos. Mag. B 61, 473 (1990).

    Article  CAS  Google Scholar 

  38. N. Schlorke, J. Eckert, and L. Schultz, Mater. Sci. Eng. A 226–228, 425 (1997).

    Article  Google Scholar 

  39. M. Seidel, J. Eckert, E. Zueco-Rodrigo, and L. Schultz, J. Non-Cryst. Solids 205–207, 514 (1996).

    Article  Google Scholar 

  40. N. Schlorke, J. Eckert, and L. Schultz, Mater. Sci. Forum 269–272, 761 (1998).

    Article  Google Scholar 

  41. C.C. Hays, C.P. Kim, and W.L. Johnson, Phys. Rev. Lett. 84, 2901 (2000).

    Article  CAS  Google Scholar 

  42. F. Szuecs, C.P. Kim, and W.L. Johnson, Acta Mater. 49, 1507 (2001).

    Article  CAS  Google Scholar 

  43. E. Pekarskaya, C.P. Kim, and W.L. Johnson, J. Mater. Res. 16, 2513 (2001).

    Article  CAS  Google Scholar 

  44. A. Inoue, T. Zhang, and Y.H. Kim, Mater. Trans. JIM 38, 749 (1997).

    Article  CAS  Google Scholar 

  45. A. Inoue, T. Zhang, M.W. Chen, and T. Sakurai, J. Mater. Res. 15, 2195 (2000).

    Article  CAS  Google Scholar 

  46. Y.H. Kim, A. Inoue, and T. Masumoto, Mater. Trans. JIM 32, 599 (1991).

    Article  CAS  Google Scholar 

  47. A. Inoue, Y.H. Kim, and T. Masumoto, Mater. Trans. JIM 33, 487 (1992).

    Article  Google Scholar 

  48. G.S. Choi, Y.H. Kim, H.K. Cho, A. Inoue, and T. Masumoto, Scr. Metall. Mater. 33, 1301 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L.C., Xu, J. & Ma, E. Mechanically Alloyed Amorphous Ti50(Cu0.45Ni0.55)44–xAlxSi4B2 Alloys with Supercooled Liquid Region. Journal of Materials Research 17, 17 (2002). https://doi.org/10.1557/JMR.2002.0258

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/JMR.2002.0258

Navigation