Skip to main content
Log in

Theory of the charged cluster formation in the low pressure synthesis of diamond: Part I. Charge-induced nucleation

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Based on several experimental observations, Hwang et al.> recently proposed “the charged cluster model” [J. Cryst. Growth, 162, 55–68 (1996)] to disentangle the “puzzling thermodynamic paradox” encountered in the gas-activated chemical vapor deposition (CVD) of diamond. Many unusual phenomena observed in the CVD diamond process can be successfully approached by the charged cluster model. However, there are a couple of important subjects still unsolved quantitatively. The first question is connected with the main driving force for this unusual nucleation in the gas phase. The second issue is related to the difference in the thermodynamic stability between graphite and diamond for a nanometer-sized cluster during the growth. In this study, we have theoretically examined the thermodynamic driving forces for the charge-induced nucleation, in general, and have applied this idea to the nucleation of the charged carbon-atom cluster. It was shown that the short-range ion-induced dipole interaction and the ion-solvation electrostatic effect (Born term) were mainly responsible for this unusual nucleation in the gas phase. The theoretical analysis presented in this article is quite generic and, thus, can be applied to any process that involves the charge-induced nucleation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. B.V. Derjaguin and D.B. Fedoseev, The Growth of Diamond and Graphite from the Gas Phase (Nauka, Moscow, USSR, 1977), Chap. 4.

  2. B. V. Spitsyn, L. L. Bouilov, and B. V. Derjaguin, J. Cryst. Growth 52, 219 (1981).

    Article  CAS  Google Scholar 

  3. S. Matsumoto, Y. Sato, M. Tsutsumi, and N. Setaka, J. Mater. Sci. 17, 3106 (1982).

    Article  CAS  Google Scholar 

  4. J. C. Angus and C. C. Hayman, Science 241, 913 (1988).

    Article  CAS  Google Scholar 

  5. K. E. Spear, J. Am. Ceram. Soc. 72, 171 (1989).

    Article  CAS  Google Scholar 

  6. W. A. Yarbrough, J. Am. Ceram. Soc. 75, 3179 (1992).

    Article  CAS  Google Scholar 

  7. J. C. Angus, H. A. Will, and W. S. Standko, J. Appl. Phys. 39, 2915 (1968).

    Article  CAS  Google Scholar 

  8. N. Setaka, in Chemical Vapor Deposition 1987, Proc. 10th Int. Conf. on CVD, edited by G. W. Cullen and J. Blocher, Jr. (The Electrochemical Society, Pennington, NJ, 1987), p. 1156.

  9. Y. Saito, K. Sato, H. Tanaka, K. Fujita, and S. Matsuda, J. Mater. Sci. 23, 188 (1986).

    Google Scholar 

  10. A. R. Badzian, T. Badzian, R. Roy, R. Messier, and K. E. Spear, Mater. Res. Bull. 23, 531 (1988).

    Article  CAS  Google Scholar 

  11. M. C. Salvadori, M. A. Brewer, J. W. Ager III, K. M. Krishnan, and I. G. Brown, J. Electrochem. Soc. 139, 558 (1992).

  12. N. M. Hwang, J. H. Hahn, and D. Y. Yoon, J. Cryst. Growth 160, 87 (1996).

    Article  CAS  Google Scholar 

  13. A. G. Whittaker, Science 200, 763 (1978).

    Article  CAS  Google Scholar 

  14. P. Badziag, W. S. Verwoerd, W. P. Ellis, and N. R. Greiner, Nature 343, 244 (1990).

    Article  CAS  Google Scholar 

  15. N.M. Hwang, G.W. Bahng, and D.N. Yoon, Diamond Relat. Mater. 1, 191 (1992).

    Article  CAS  Google Scholar 

  16. E.F. O’Brien and G. W. Robinson, J. Chem. Phys. 61, 1050 (1974).

  17. A. W. Castleman, Jr., P. M. Holland, and R. G. Keesee, J. Chem. Phys. 68, 1760 (1978).

  18. J. G. Wilson, The Principles of Cloud-Chamber Technique (Cambridge Univ. Press, Cambridge, 1951), Chap. 1.

  19. C. Peyrou, in Bubble and Spark Chambers, edited by R.P. Shutt (Academic Press, Orlando, FL, 1967), Chap. 2.

  20. N. M. Hwang, J. H. Hahn, and D. Y. Yoon, J. Cryst. Growth 162, 55 (1996).

    Article  CAS  Google Scholar 

  21. K. Choi, S. L. Kang, H. M. Jang, and N. M. Hwang, J. Cryst. Growth 172, 416 (1997).

    Article  CAS  Google Scholar 

  22. H. M. Jang and N. M. Hwang, J. Mater. Res. 13, 3536 (1998).

    Article  CAS  Google Scholar 

  23. R.B. Wang, M. Sommer, and F.W. Smith, J. Cryst. Growth 119, 271 (1992).

    Article  CAS  Google Scholar 

  24. N.M. Hwang, J. Cryst. Growth 135, 165 (1994).

    Article  CAS  Google Scholar 

  25. J. O’M. Bockris and A. K. N. Reddy, Modern Electrochemistry (Plenum Press, New York, 1970), Vol. 1, Chap. 2.

  26. CRC Handbook of Chemistry and Physics, 74th ed. (CRC Press, Boca Raton, FL, 1994).

  27. G.C. Nieman and K.J. Klabunde, “Clustering of Free Atoms and Particles: Polymerization and the Beginning of Film Growth,” in Thin Films from Free Atoms and Particles, edited by K. J. Klabunde (Academic Press, Inc., Orlando, FL, 1985), Chap. 2.

  28. S. Yang, K. J. Taylor, M.J. Craycraft, J. Conceicao, C. L. Pettiette, O. Cheshnovsky, and R.E. Smalley, Chem. Phys. Lett. 144, 431 (1988).

    Article  CAS  Google Scholar 

  29. K.S. Pitzer and E. Clementi, J. Am. Ceram. Soc. 81, 4477 (1959).

    CAS  Google Scholar 

  30. N. Furstenau and F. Hillenkamp, Intern. J. Mass Spectrom. Ion Phys. 37, 155 (1981).

    Article  Google Scholar 

  31. J. Heicklen, Colloid Formation and Growth: A Chemical Kinetic Approach (Academic Press, New York, 1976), Chap. VI.

  32. N. Lee, R. G. Keesee, and A.W. Castleman, Jr., J. Colloid Interf. Sci. 75, 555 (1980).

    Article  CAS  Google Scholar 

  33. J. J. Thompson, Conduction of Electricity through Gases (Cambridge Univ. Press, 1906).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jang, H.M., Hwang, N.M. Theory of the charged cluster formation in the low pressure synthesis of diamond: Part I. Charge-induced nucleation. Journal of Materials Research 13, 3527–3535 (1998). https://doi.org/10.1557/JMR.1998.0481

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1998.0481

Navigation