Skip to main content
Log in

Nanocrystalline nickel and nickel-copper alloys: Synthesis, characterization, and thermal stability

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Pulsed electrodeposition is a simple, yet versatile method for the production of nanostructured metals. For n-nickel we determine the influence of the physical and chemical deposition parameters on the nanostructure of the deposits and demonstrate that the grain size can be tuned to values between 13 and 93 nm, with rather narrow grain size distribution. The thermal stability of our n-nickel as studied by x-ray diffraction and differential thermal analysis exhibits no detectable grain growth up to temperatures of about 380 K and an initial \(\sqrt t \) behavior at 503 K followed by a regime of anomalous grain growth. For nanocrystalline Ni1-x Cux (Monel-metal) we demonstrate that alloy formation occurs at room temperature and that both chemical composition and grain size can be controlled by the pulse parameters and by appropriate organic additives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Gleiter, Prog. Mater. Sci. 33, 223 (1989).

    Article  CAS  Google Scholar 

  2. C. G. Granqvist and R. A. Buhrman, J. Appl. Phys. 47, 2200 (1976).

    Article  CAS  Google Scholar 

  3. R. Birringer and H. Gleiter, Encyclopedia of Material Science and Engineering: Supplement 1, edited by R. W. Cahn and M. B. Beaver (Pergamon Press, Oxford, 1988), p. 339.

    Google Scholar 

  4. H. Gleiter, Phys. Blätter 47, 753 (1991).

    Article  CAS  Google Scholar 

  5. C. C. Koch and Y. S. Cho, Nanostruct. Mater. 1, 207 (1992).

    Article  CAS  Google Scholar 

  6. G. W. Niemann, J. R. Weertman, and R. W. Siegel, J. Mater. Res. 6, 1012 (1991).

    Article  Google Scholar 

  7. L. E. Candlish, B. H. Kear, and B. H. Kim, Nanostruct. Mater. 1, 119 (1992).

    Article  Google Scholar 

  8. Y. Yoshizawa, S. Oguma, and K. Yamauchi, J. Appl. Phys. 64, 6044 (1988).

    Article  CAS  Google Scholar 

  9. R. Rofagha, R. Langer, A. M. El-Sherik, U. Erb, G. Palumbo, and K. T. Aust, Scripta Metall. Mater. 25, 2867 (1991).

    Article  CAS  Google Scholar 

  10. G. Palumbo, F. Gonzalez, A. M. Brennenstuhl, U. Erb, W. Shmayda, and P. C. Lichtenberger, Nanostruct. Mater. 9, 737 (1997).

    Article  CAS  Google Scholar 

  11. G. Palumbo, P. C. Lichtenberger, F. Gonzalez, and A. M. Brennenstuhl, U. S. Patent 5,538,615 (1996).

  12. A. de la Rive, Compt. Rend. 4, 835 (1837).

    Google Scholar 

  13. A. Coehn, Deutsches Patent 75482 (1893).

  14. B. Rosing, Z. Elektrochem. 2, 550 (1896).

    Article  Google Scholar 

  15. G. McMahon and U. Erb, Microstruct. Sci. 17, 447 (1989).

    Google Scholar 

  16. W. Kleinekathöfer, Ch. J. Raub, and E. Raub, Metalloberfl. 36, 411 (1982).

    Google Scholar 

  17. H. Natter, T. Krajewski, and R. Hempelmann, Ber. Bunsenges. Phys. Chem. 100, 55 (1996).

    Article  CAS  Google Scholar 

  18. H. Natter and R. Hempelmann, J. Phys. Chem. 100, 19,525 (1996).

    Article  CAS  Google Scholar 

  19. A. M. El-Sherik and U. Erb, J. Mater. Sci. 30, 5743 (1995).

    Article  CAS  Google Scholar 

  20. R. T. C. Choo, J. M. Toguri, A. M. El-Sherik, and U. Erb, J. Appl. Electrochem. 25, 384 (1995).

    Article  CAS  Google Scholar 

  21. A. M. El-Sherik and U. Erb, Nanocrystalline Metals and Process of Producing the Same, U.S. Patent 5,352,266 (1994).

  22. Á. Cziráki, B. Fogarassy, I. Geröcs, E. Tóth-Kádár, and I. Bakonyi, J. Mater. Sci. 29, 4771 (1994).

    Article  Google Scholar 

  23. I. Bakonyi, E. Tóth-Kádár, L. Pogány, Á. Cziráki, I. Geröcs, K. Varga-Josepovits, B. Arnold, and K. Wetzig, Surf. Coat. Technol. 78, 124 (1996).

    Article  CAS  Google Scholar 

  24. M. Soetratmo, H. Natter, R. Hempelmann, O. Hartmann, R. Wäppling, and M. Ekström, Hyperfine Interactions 105, 245 (1997).

    Article  CAS  Google Scholar 

  25. H. Richter, Z. P. Wang, and L. Ley, Solid State Commun. 39, 625 (1981).

    Article  CAS  Google Scholar 

  26. S. C. Mehta, D. A. Smith, and U. Erb, Mater. Sci. Eng. A204, 227 (1995).

    Article  CAS  Google Scholar 

  27. U. Klement, U. Erb, A. M. El-Sherik, and K. T. Aust, Mater. Sci. Eng. A203, 177 (1995).

    Article  CAS  Google Scholar 

  28. B. E. Warren, X-Ray Diffraction (Addison-Wesley, Reading, MA, 1968).

    Google Scholar 

  29. B. E. Warren and L. E. Averbach, J. Appl. Phys. 21, 536 (1950).

    Article  Google Scholar 

  30. B. E. Warren and L. E. Averbach, J. Appl. Phys. 23, 497 (1952).

    Article  CAS  Google Scholar 

  31. H. P. Klug and L. E. Alexander, X-Ray Diffraction Procedures, 2nd ed. (John Wiley, New York, 1974).

    Google Scholar 

  32. P. Scherrer, Göttinger Nachrichten 2, 98 (1918).

    Google Scholar 

  33. D. Balzar, J. Res. Natl. Inst. Stand. Technol. 98, 321 (1993).

    Article  CAS  Google Scholar 

  34. W. L. Smith, J. Appl. Crystallogr. 9, 187 (1976).

    Article  CAS  Google Scholar 

  35. C. E. Krill and R. Birringer, Philos. Mag. A (in print).

  36. C. C. Roth and H. Leidheiser Jr., J. Electrochem. Soc. 133, 2491 (1953).

    Google Scholar 

  37. O. P. Watts, Trans. Am. Electrochem. Soc. 29, 395 (1916).

    Google Scholar 

  38. M. Hoffmann and R. Birringer, Acta Mat. 44, 2729 (1996).

    Article  CAS  Google Scholar 

  39. T. R. Haasz, K. T. Aust, G. Palumbo, A. M. El-Sherik, and U. Erb, Scripta Metall. et Mater. 32, 423 (1995).

    Article  CAS  Google Scholar 

  40. K. Boylan, D. Ostrander, U. Erb, G. Palumbo, and K. T. Aust, Scripta Metall. et Mater. 25, 2711 (1991).

    Article  CAS  Google Scholar 

  41. J. W. Christian, The Theory of Transformations in Metals and Alloys, 2nd ed. (Pergamon Press, Oxford, 1975).

    Google Scholar 

  42. G. Gottstein, Rekristallisation Metallischer Werkstoffe (Deutsche Gesellschaft für Metallkunde, 1984).

  43. W. Kleber, Einführung in die Kristallographie, 17th ed. (Verlag Technik GmbH, Berlin, 1990).

    Google Scholar 

  44. U. Erb, A. M. El-Sherik, G. Palumbo, and K. T. Aust, Nanostruct. Mater. 2, 383 (1993).

    Article  CAS  Google Scholar 

  45. M. Volmer and A. Z. Weber, Die Kinetik der Phasenbildung (Verlag Steinkopff, Dresden, 1939).

    Google Scholar 

  46. M. Volmer and A. Z. Weber, Z. Phys. Chem. 119, 277 (1926).

    CAS  Google Scholar 

  47. J. C. Puippe and N. Ibl, Plating and Surface Finishing 67, 68 (1980).

    CAS  Google Scholar 

  48. H. Fischer, Reine und angewandte Metallkunde in Einzeldarstellungen: Elektrolytische Abscheidung und Elektrokristallisation von Metallen (Springer Verlag, Berlin, 1954).

    Book  Google Scholar 

  49. J. O’M. Bockris and G. A. Razumney, Fundamental Aspects of Electrocrystallization (Plenum Press, New York, 1967).

    Book  Google Scholar 

  50. V.Y. Gertsman and R. Birringer, Scripta Metall. et Mater. 30, 577 (1994).

    Article  CAS  Google Scholar 

  51. H. Natter, Ph. D. Thesis, Saarbrücken, Germany (1996).

  52. F. Foerster, Z. Elektrochem. 22, 85 (1916).

    Google Scholar 

  53. F. Foerster, Ber. Bunsenges. Phys. Chem. 38, 2940 (1905).

    Google Scholar 

  54. F. W. Salt, Trans. Faraday Soc., Electrode Processes, 169 (1947).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Natter, H., Schmelzer, M. & Hempelmann, R. Nanocrystalline nickel and nickel-copper alloys: Synthesis, characterization, and thermal stability. Journal of Materials Research 13, 1186–1197 (1998). https://doi.org/10.1557/JMR.1998.0169

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1998.0169

Navigation