Skip to main content
Log in

In situ electron microscopy studies of the inhibition of graphite oxidation by phosphorus

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A combination of in situ transmission electron microscopy and thermogravimetric techniques has been used to follow the manner by which phosphorus addition to graphite influences its interaction with oxygen. Direct observation of the process shows that the additive completely inhibits the reaction at temperatures below 830 °C. At higher temperatures phosphorus species are found to bond preferentially to the graphite “armchair”{1120} faces leaving the “zigzag” {100} faces vulnerable to attack by oxygen. In situ electron diffraction analysis indicates the formation of a chemical bond between the phosphorus and graphite edge atoms at high temperatures, which involves the formation of a complex believed to become an integral part of the structure. This unique type of chemical bonding is believed to be responsible for the observed thermal stability of P–O species on the graphite atoms at temperatures up to 1050 °C. In a further series of experiments, phosphorus was found to poison the catalytic activity of cobalt, which in its unadulterated state is a very effective promoter of the graphite-oxygen reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Thomas, in Chemistry andPhysics of Carbon, edited by P. L. Walker, Jr. (Marcel Dekker, New York, 1965), Vol. 1, p. 1.

    Google Scholar 

  2. R. T. K. Baker, in Carbon and Coal Gasification, NATO ASI Series, edited by J. L. Figueiredo and J. A. Moulijn (1986), p. 231.

  3. D.W. McKee, in Chemistry and Physics of Carbon, edited by P. L. Walker, Jr. and P. A. Thrower (Marcel Dekker, New York, 1981), Vol. 16, p. 1.

    Google Scholar 

  4. J. F. Rakszawski and W. E. Parker, Carbon 2, 53 (1964).

    Article  CAS  Google Scholar 

  5. P. Hawtin and J. A. Gibson, in 3rd Conf. Ind. Carbon and Graphite (Society of Chem. Ind., London, 1970), p. 309.

    Google Scholar 

  6. M. C. A. Navarro and G. M. Jenkins, in 4th Conf. Ind. Carbon and Graphite (Society of Chem. Ind., London, 1974), p. 392.

    Google Scholar 

  7. D. W. McKee, Carbon 10, 491 (1972).

    Article  CAS  Google Scholar 

  8. D.W. McKee, C.L. Spiro, and E.J. Lamby, Carbon 22, 285 (1984).

    Article  CAS  Google Scholar 

  9. R. T. K. Baker, Carbon 24, 715 (1986).

    Article  CAS  Google Scholar 

  10. P.S. Harris, F.S. Feates, and B.G. Reuben, Carbon 12, 189 (1974).

    Article  CAS  Google Scholar 

  11. G. R. Hennig, in Chemistry andPhysics of Carbon, edited by P. L. Walker (Marcel Dekker, New York, 1966), Vol. 2, p. 1.

    Google Scholar 

  12. B.T. Kelly, Physics of Graphite (Applied Sciences, London, 1981).

    Google Scholar 

  13. R.T.K. Baker and P.S. Harris, Carbon 11, 15 (1973).

    Article  Google Scholar 

  14. G. R. Hennig, Science 147, 733 (1965).

    Article  CAS  Google Scholar 

  15. J.M. Thomas, Carbon 8, 413 (1970).

    Article  CAS  Google Scholar 

  16. F.S. Feates and P.S. Robinson, in 3rd Conf. Ind. Carbon and Graphite (Society of Chem. Ind., London, 1971), p. 233.

    Google Scholar 

  17. E.L. Evans, R.J.M. Griffiths, and J.M. Thomas, Science 171, 174 (1971).

    Article  CAS  Google Scholar 

  18. R.T. Yang and C. Wong, Science 214, 437 (1981).

    Article  CAS  Google Scholar 

  19. R.T. Yang, in Chemistry and Physics of Carbon, edited by P.A. Thrower (Marcel Dekker, New York, 1983), Vol. 19, p. 163.

    Google Scholar 

  20. H. Chang and A.J. Bard, J. Am. Chem. Soc. 112, 4598 (1990).

    Article  CAS  Google Scholar 

  21. R. Schlögl, G. Llose, and M. Wesemann, Solid State Ionics 42, 183 (1990).

    Article  Google Scholar 

  22. X. Chu and L.D. Schmidt, Carbon 29, 1251 (1991).

    Article  CAS  Google Scholar 

  23. X. Chu, L.D. Schmidt, S.G. Chen, and R.T. Yang, J. Catal. 140, 543 (1993).

    Article  Google Scholar 

  24. G.F. Dienes, G.R. Hennig, and W. Koshiba, Proc. Int. Conf. Peaceful Uses of Atomic Energy, Geneva, Switzerland, Paper No. 1195 (1963).

  25. H. Marsh, E. O’Hair, and W.F.K. Wynne-Jones, Nature 198, 1195 (1963).

    Article  CAS  Google Scholar 

  26. M. Otterbein and L. Bonnetain, Compt. Rend. 259 (9), 2563 (1965).

    Google Scholar 

  27. R. T. Yang and C. Wong, J. Chem. Phys. 75, 4471 (1981).

    Article  CAS  Google Scholar 

  28. P. Pattabiraman, N. M. Rodriguez, B. Z. Jang, and R. T. K. Baker, Carbon 28, 867 (1990).

    Article  CAS  Google Scholar 

  29. N. M. Rodriguez, S. G. Oh, W. B. Downs, P. Pattabiraman, and R.T.K. Baker, Rev. Sci. Instrum. 61, 1863 (1990).

    Article  CAS  Google Scholar 

  30. S. G. Oh and R. T. K. Baker, J. Catal. 128, 137 (1991).

    Article  CAS  Google Scholar 

  31. R.T. Yang and C. Wong, J. Catal. 82, 245 (1983).

    Article  CAS  Google Scholar 

  32. The Merck Index, edited by M. Windholz, 13th ed. (Merck & Co., Inc., 1983), p. 1061.

  33. K. C. Weast, Handbook of Chemistry and Physics, B-127, 63rd ed. (1982–83).

    Google Scholar 

  34. D. E. C. Corbridge, Phosphorus, an Outline of Its Chemistry and Technology (Elsevier, New York, 1985).

    Google Scholar 

  35. E.D. Morris and C.E. Nordman, Inorg. Chem. 8, 1673 (1969).

    Article  CAS  Google Scholar 

  36. I. Haiduc, The Chemistry of Inorganic Ring Systems (Wiley-Interscience, London, 1970), Vol. 2.

    Google Scholar 

  37. C. C. Chen, N. M. Rodriguez, and R. T. K. Baker, in Catalyst Deactivation, edited by C. H. Bartholomew and J. B. Butt (Elsevier Science Publishing, Amsterdam, 1991), p. 169.

    Google Scholar 

  38. S. G. Oh, N. M. Rodriguez, and R. T. K. Baker, J. Catal. 136, 584 (1992).

    Article  CAS  Google Scholar 

  39. J. Bernard, Catal. Rev. Sci. Eng. 3, 93 (1969).

    Article  Google Scholar 

  40. J. Oudar, Catal. Rev. Sci. Eng. 22, 171 (1980).

    Article  CAS  Google Scholar 

  41. C. H. Bartholomew, P.K. Agrawal, and J.R. Katzer, Adv. Catal. 31, 135 (1982).

    CAS  Google Scholar 

  42. H. Wise, J. McCarty, and J. Oudar, in Deactivation and Poisoning of Catalysts, edited by J. Oudar and H. Wise (Marcel Dekker, New York, 1985), p. 1.

    Google Scholar 

  43. G.W. Bridger and W. Wyrwas, Chem. Process Eng. 48, 101 (1967).

    CAS  Google Scholar 

  44. K. C. Campbell, J. Catal. 27, 7 (1972).

    Article  CAS  Google Scholar 

  45. M. Kiskinova and D. W. Goodman, Surf. Sci. 108, 64 (1981).

    Article  CAS  Google Scholar 

  46. N. M. Rodriguez and R. T. K. Baker, J. Mater. Res. 8, 1886 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oh, S.G., Rodriguez, N.M. In situ electron microscopy studies of the inhibition of graphite oxidation by phosphorus. Journal of Materials Research 8, 2879–2888 (1993). https://doi.org/10.1557/JMR.1993.2879

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1993.2879

Navigation