Skip to main content
Log in

Structural and thermodynamic properties of nanocrystalline fcc metals prepared by mechanical attrition

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nanocrystalline fcc metals have been synthesized by mechanical attrition. The crystal refinement and the development of the microstructure have been investigated in detail by x-ray diffraction, differential scanning calorimetry, and transmission electron microscopy. The deformation process causes a decrease of the grain size of the fcc metals to 6–22 nm for the different elements. The final grain size scales with the melting point and the bulk modulus of the respective metal: the higher the melting point and the bulk modulus, the smaller the final grain size of the powder. Thus, the ultimate grain size achievable by this technique is determined by the competition between the heavy mechanical deformation introduced during milling and the recovery behavior of the metal. X-ray diffraction and thermal analysis of the nanocrystalline powders reveal that the crystal size refinement is accompanied by an increase in atomic-level strain and in the mechanically stored enthalpy in comparison to the undeformed state. The excess stored enthalpies of 10–40% of the heat of fusion exceed by far the values known for conventional deformation processes. The contributions of the atomic-level strain and the excess enthalpy of the grain boundaries to the stored enthalpies are critically assessed. The kinetics of grain growth in the nanocrystalline fcc metals are investigated by thermal analysis. The activation energy for grain boundary migration is derived from a modified Kissinger analysis, and estimates of the grain boundary enthalpy are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Gleiter and P. Marquardt, Z. Metallk. 75, 263 (1984).

    CAS  Google Scholar 

  2. R. Birringer, H. Gleiter, H. P. Klein, and P. Marquardt, Phys. Lett. A 102, 356 (1984).

    Article  Google Scholar 

  3. H. Gleiter, Prog. Mater. Sci. 33, 223 (1989).

    Article  CAS  Google Scholar 

  4. J. Karch, R. Birringer, and H. Gleiter, Nature 330, 556 (1987).

    Article  CAS  Google Scholar 

  5. T. Mütschele and R. Kirchheim, Scripta Metall. 21, 135 (1987).

    Article  Google Scholar 

  6. U. Herr, J. Jing, U. Gonser, and H. Gleiter, Solid State Commun. 76, 197 (1990).

    Article  CAS  Google Scholar 

  7. E. Hellstern, H. J. Fecht, Z. Fu, and W. L. Johnson, J. Mater. Res. 4, 1292 (1989).

    Article  Google Scholar 

  8. E. Hellstem, H. J. Fecht, Z. Fu, and W. L. Johnson, J. Appl. Phys. 65, 305 (1989).

    Article  Google Scholar 

  9. H. J. Fecht, E. Hellstern, Z. Fu, and W. L. Johnson, Metall. Trans. A 21, 2333 (1990).

    Article  Google Scholar 

  10. H. J. Fecht, E. Hellstern, Z. Fu, and W. L. Johnson, Adv. Powder Metall. 1, 11 (1989).

    Google Scholar 

  11. M. Oehring and R. Bormann, J. de Physique (Paris) 51, C4–169 (1990).

    Google Scholar 

  12. W. Schlump and H. Grewe, in Proc. DGM Conf. on New Materials by Mechanical Alloying Techniques, edited by E. Arzt and L. Schultz (DGM Informationsgesellschaft, Oberursel, 1989), p. 307.

  13. P. H. Shingu, B. Huang, J. Kuyama, K. N. Ishihara, and S. Nasu, in Proc. DGM Conf. on New Materials by Mechanical Alloying Techniques, edited by E. Arzt and L. Schultz (DGM Informationsgesellschaft, Oberursel, 1989), p. 319.

  14. J.S.C. Jang and C.C. Koch, J. Mater. Res. 5, 498 (1990).

    Article  CAS  Google Scholar 

  15. J.S.C. Jang and C.C. Koch, Scripta Metall. Mater. 24, 1599 (1990).

    Article  CAS  Google Scholar 

  16. J. Eckert, J.C. Holzer, C.E. Krill III, and W.L. Johnson, Mater. Sci. Forum (in press).

  17. B.D. Cullity, Elements of X-ray Diffraction, 2nd ed. (Addison-Wesley, Reading, MA, 1978).

    Google Scholar 

  18. B. E. Warren, X-ray Diffraction (Addison-Wesley, Reading, MA, 1969), p. 251.

    Google Scholar 

  19. H. P. Klug and L. Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed. (John Wiley and Sons, New York, 1974), p. 661.

    Google Scholar 

  20. P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969).

    Google Scholar 

  21. C.J. Smithells, Smithells Metals Reference Book, 6th ed., edited by E.A. Brandes (Butterworths, London, 1983), p. 15-1.

  22. R. Birringer, U. Herr, and H. Gleiter, Trans. Jpn. Inst. Metals. Suppl. 27, 43 (1986).

    Google Scholar 

  23. J. Rupp and R. Birringer, Phys. Rev. B 36, 7888 (1987).

    Article  CAS  Google Scholar 

  24. H. E. Schaefer, R. Würschum, R. Birringer, and H. Gleiter, J. Less-Common Met. 140, 161 (1988).

    Article  CAS  Google Scholar 

  25. D. Korn, A. Morsch, R. Birringer, W. Arnold, and H. Gleiter, J. de Physique (Paris) 49, C5–769 (1988).

    Google Scholar 

  26. A. H. Cokshi, A. Rosen, J. Karch, and H. Gleiter, Scripta Metall. 23, 1679 (1989).

    Article  Google Scholar 

  27. G. W. Nieman, J. R. Weertman, and R. W. Siegel, J. Mater. Res. 6, 1012 (1991).

    Article  CAS  Google Scholar 

  28. W. Wunderlich, Y. Ishida, and R. Maurer, Scripta Metall. Mater. 24, 403 (1990).

    Article  CAS  Google Scholar 

  29. N.J. Long, R.F. Marzke, M. McKelvy, and W.S. Glaunsinger, Ultramicroscopy 20, 15 (1986).

    Article  CAS  Google Scholar 

  30. K.E. Easterling and A.R. Thölén, Powder Met. 16, 112 (1973).

    Article  CAS  Google Scholar 

  31. L.C. Chen and F. Spaepen, J. Appl. Phys. 69, 679 (1991).

    Article  CAS  Google Scholar 

  32. J. C. Holzer, unpublished results.

  33. M. A. Meyers and K. K. Chawla, Mechanical Metallurgy (Prentice-Hall, Englewood Cliffs, NJ, 1984), p. 494.

    Google Scholar 

  34. G. D. Hughes, S. D. Smith, C. S. Pande, H. R. Johnson, and R. W. Armstrong, Scripta Metall. 20, 93 (1986).

    Article  CAS  Google Scholar 

  35. K. Lu, W. D. Wei, and J. T. Wang, Scripta Metall. Mater. 24, 2319 (1990).

    Article  CAS  Google Scholar 

  36. H.J. Höfler and R.S. Averback, Scripta Metall. Mater. 24, 2401 (1990).

    Article  Google Scholar 

  37. G.W. Nieman, J.R. Weertman, and R.W. Siegel, Scripta Metall. 23, 2013 (1989).

    Article  CAS  Google Scholar 

  38. T. G. Nieh and J. Wadsworth, Scripta Metall. Mater. 25, 955 (1991).

    Article  CAS  Google Scholar 

  39. M.B. Bever, D.L. Holt, and A.L. Titchener, Prog. Mater. Sci. 17, 1 (1973).

    Article  Google Scholar 

  40. C. W. Mays, J. S. Vermaak, and D. Kuhlmann-Wilsdorf, Surf. Sci. 12, 134 (1968).

    Article  CAS  Google Scholar 

  41. R.C. Cammarata and R.K. Eby, J. Mater. Res. 6, 888 (1991).

    Article  CAS  Google Scholar 

  42. P. Haasen, Physical Metallurgy, 2nd ed. (Cambridge University Press, Cambridge, U.K., 1986), p. 333.

    Google Scholar 

  43. W. L. Johnson, Prog. Mater. Sci. 30, 81 (1986).

    Article  CAS  Google Scholar 

  44. X. Zhu, R. Birringer, U. Herr, and H. Gleiter, Phys. Rev. B 35, 9085 (1987).

    Article  CAS  Google Scholar 

  45. T. Haubold, R. Birringer, B. Lengeler, and H. Gleiter, Phys. Lett. A 135, 461 (1989).

    Article  CAS  Google Scholar 

  46. T. Haubold, W. Krauss, and H. Gleiter, Philos. Mag. Lett. 63, 245 (1991).

    Article  CAS  Google Scholar 

  47. M. R. Fitzsimmons, J.A. Eastman, M. Müller-Stach, and G. Wallner, in Clusters and Cluster-Assembled Materials, edited by R. S. Averback, J. Bernholc, and D. L. Nelson (Mater. Res. Soc. Symp. Proc. 206, Pittsburgh, PA, 1991), p. 475.

  48. G.W. Nieman, J.R. Weertman, and R.W. Siegel, in Clusters and Cluster-Assembled Materials, edited by R.S. Averback, J. Bernholc, and D.L. Nelson (Mater. Res. Soc. Symp. Proc. 206, Pittsburgh, PA, 1991), p. 493.

  49. R. A. Swalin, Thermodynamics of Solids, 2nd ed. (John Wiley and Sons, New York, 1972), p. 244.

    Google Scholar 

  50. R. A. Swalin, Thermodynamics of Solids, 2nd ed. (John Wiley and Sons, New York, 1972), p. 230.

    Google Scholar 

  51. S. M. Foiles, M. I. Baskes, and M. S. Daw, Phys. Rev. B 33, 7983 (1986).

    Article  CAS  Google Scholar 

  52. D. Wolf, Scripta Metall. 23, 1913 (1989).

    Article  CAS  Google Scholar 

  53. H. E. Kissinger, J. Res. Natn. Bur. Stand. 57, 217 (1956).

    Article  CAS  Google Scholar 

  54. A. R. Wazzan, J. Appl. Phys. 36, 3596 (1965).

    Article  CAS  Google Scholar 

  55. C. J. Smithells, Smithells Metals Reference Book, 6th ed., edited by E. A. Brandes (Butterworths, London, 1983), p. 13-1.

  56. C. J. Smithells, Smithells Metals Reference Book, 6th ed., edited by E. A. Brandes (Butterworths, London, 1983), p. 13–94.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eckert, J., Holzer, J.C., Krill, C.E. et al. Structural and thermodynamic properties of nanocrystalline fcc metals prepared by mechanical attrition. Journal of Materials Research 7, 1751–1761 (1992). https://doi.org/10.1557/JMR.1992.1751

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1992.1751

Navigation