Skip to main content
Log in

Synthesis of porosity controlled ceramic membranes

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Porosity control in ceramic membranes has been achieved by controlling particle packing densities in sol-gel processing. TiO2 xerogels with two mean pore radii of 0.7 and 1.7 nm and a porosity varying from 30% to 52% have been obtained. ZrO2 xerogels with a mean pore radius of 0.7 nm and a porosity varying from 7% to 34% have also been prepared. The principle of controlling porosity is to make spongy aggregates and to control the degree of aggregation. Experiments have been conducted to show that spongy aggregates can be produced by gradually removing protons from the strongly charged particles. Viscosity techniques have been used to measure the relative volume fraction of the dispersed phase which, in turn, provides information on aggregate structures. Two aggregation models have been proposed to explain different structural aggregates formed through thermal destabilization in the highly charged system and through charge neutralization by gradually removing charge from the particles in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Merin and G. Daufin, Proc. 1st Int. Conf. on Inorganic Membranes, 271 (1989).

  2. J. L. Branger, R. Audinos, J. Noguera, and M. Chignac, ibid., 243 (1989).

  3. M. Nakajima, N. Jimbo, H. Nabetani, and A. Watanabe, ibid., 257 (1989).

  4. A. Deschamps, C. Walther, P. Bergez, and J. Charpin, ibid., 237 (1989).

  5. R. C. Fablani, R. Vatteroni, C.A. Nannetti, and L. Bimbi, ibid. 497 (1989).

  6. K. Iwamoto, Y.T. Lee, and M. Seno, ibid., 511 (1989).

  7. N. Ito, K. Haratani, and Y. Shindo, Jpn. Kokai Tokyo Koho, 5 (1989).

  8. R. J. R. Uhlhorn, M. H. B. J. Huis in ‘t Veld, K. Keizer, and A. J. Burggraaf, Sci. Ceram. 14, 551 (1988).

    CAS  Google Scholar 

  9. R. Maravich, G. P. Sundstrom, and W.T. Bates, Ultrapure Water 6 (6), 18, 20, 22–24, 26, 28 (1989).

  10. Y. Matsumoto and Y. Totsuka, Kagaku Kogaku 51 (10), 764 (1987).

  11. C. E. Megiris, S.W. Nam, and G. R. Gavalas, Proc. 1st Int. Conf. on Inorganic Membranes, 355 (1989).

  12. V.T. Zaspalis, W. van Praag, K. Keizer, J. G. van Ommen, J. R. H. Ross, and A. J. Burggraaf, ibid., 367 (1989).

  13. E. A. Hazbun, U.S. Patent 4791079 (1988).

  14. L.W. Niedrach, Science 207 (4436), 1200 (1980).

    Article  CAS  Google Scholar 

  15. S. Hettiarachchi and D. D. Macdonald, J. Electrochem. Soc. 131 (9), 2206 (1984).

    Article  CAS  Google Scholar 

  16. Y. S. Lin, L. G. J. DE Haart, K. J. DeVries, and A. J. Burggraaf, Proc. Electrochem. Soc. 89–11 (Proc. Int. Symp. Solid Oxide Fuel Cells, 1st, 1989), p. 67.

  17. J. Sabate, M.A. Anderson, H. Kikkawa, Q. Xu, and C.G. Hill, Jr., Envir. Sci. Tech. (1990, submitted).

  18. Newsfront, Chem. Eng., June 9, 19 (1986).

  19. B. E. Yoldas, J. Mater. Sci. 10, 1856 (1975).

    Article  CAS  Google Scholar 

  20. M. A. Anderson, M. J. Gieselmann, and Q. Xu, J. Membr. Sci. 39 (3), 243 (1988).

    Article  CAS  Google Scholar 

  21. Q. Xu and M.A. Anderson, in Multicomponent Ultrafine Microstructures, edited by L. E. McCandish, B. H. Kear, D. E. Polk, and R.W. Siegel (Mater. Res. Soc. Symp. Proc. 132, Pittsburgh, PA, 1989), p. 41.

    Google Scholar 

  22. M. J. Gieselmann and M. A. Anderson, J. Am. Ceram. Soc. 72, 980 (1989).

    Article  CAS  Google Scholar 

  23. M. Mooney, J. Coll. Sci. 6, 162 (1951).

    Article  CAS  Google Scholar 

  24. I. M. Krieger, Adv. Coll. and Interface Sci. 3, 111 (1972).

    Article  CAS  Google Scholar 

  25. N. A. Frankel and A. Acrivos, Chem. Eng. Sci. 22, 847 (1967).

    Article  Google Scholar 

  26. N. L. Ackermann and H.T. Shen, A. I. Chem. Eng. J. 25, 327 (1979).

    Google Scholar 

  27. A. L. Graham, Rheology Research Centre Report No. 62, University of Wisconsin, June 1980.

  28. R. K. Her, Colloid Chemistry of Silica and Silicates (Cornell University Press, Ithaca, NY, 1955), p. 96.

  29. M.I. Tejedor-Tejedor and M.A. Anderson, Langmuir 2, 203 (1986).

  30. W. B. Russel, J. Fluid Mech. 85, 673 (1978).

    Article  Google Scholar 

  31. D. A. Lever, J. Fluid Mech. 92, 421 (1979).

    Article  Google Scholar 

  32. W. B. Russel, J. Fluid Mech. 85, 209 (1978).

    Article  CAS  Google Scholar 

  33. P. Meakin, Phys. Rev. Lett. 51, 119 (1983).

    Google Scholar 

  34. M. Kolb, R. Botet, and R. Jullien, Phys. Rev. Lett. 51 1123 (1983).

  35. V. A. Hackley and M.A. Anderson, Langmuir 5, 191 (1989).

    Article  CAS  Google Scholar 

  36. D.W. Schaefer, J. E. Martin, P. Wiltzius, and D. S. Cannell, Kinetics of Aggregation, edited by F. Family and D. P. Landan (North Holland, New York, 1984).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Q., Anderson, M.A. Synthesis of porosity controlled ceramic membranes. Journal of Materials Research 6, 1073–1081 (1991). https://doi.org/10.1557/JMR.1991.1073

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1991.1073

Navigation