Skip to main content
Log in

STM Tip-Induced Switching in Molybdenum Disulfide-Based Atomristors

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Scanning tunneling microscopy and spectroscopy (STM/STS) are used to electronically switch atomically-thin memristors, referred to as “atomristors”, based on a graphene/molybdenum disulfide (MoS2)/Au heterostructure. A gold-assisted exfoliation method was used to produce near-millimeter (mm) scale MoS2 on Au thin-film substrates, followed by transfer of a separately exfoliated graphene top layer. Our results reveal that it is possible to switch the conductivity of a graphene/MoS2/Au memristor stack using an STM tip. These results provide a path to further studies of atomically-thin memristors fabricated from heterostructures of two-dimensional materials such as graphene and transition metal dichalcogenides (TMDs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Yu: Neuro-inspired computing with emerging nonvolatile memorys. Proceedings of the IEEE 106, 260 (2018).

    Article  CAS  Google Scholar 

  2. S. Herculano-Houzel: The human brain in numbers: a linearly scaled-up primate brain. Frontiers in human neuroscience 3, 31 (2009).

    Article  Google Scholar 

  3. G.W. Burr, R.M. Shelby, A. Sebastian, S. Kim, S. Kim, S. Sidler, K. Virwani, M. Ishii, P. Narayanan, A. Fumarola, L.L. Sanches, I. Boybat, M. Le Gallo, K. Moon, J. Woo, H. Hwang and Y. Leblebici: Neuromorphic computing using non-volatile memory. Advances in Physics: X 2, 89 (2017).

    Google Scholar 

  4. H. Kalita, A. Krishnaprasad, N. Choudhary, S. Das, H. Chung, Y. Jung and T. Roy: Artificial Neuron using MoS2/Graphene Threshold Switching Memristors, in 2018 76th Device Research Conference (DRC) (2018), pp. 1.

  5. H. Kalita, A. Krishnaprasad, N. Choudhary, S. Das, D. Dev, Y. Ding, L. Tetard, H.-S. Chung, Y. Jung and T. Roy: Artificial Neuron using Vertical MoS2/Graphene Threshold Switching Memristors. Scientific Reports 9, 53 (2019).

    Article  Google Scholar 

  6. R.J. Ge, X.H. Wu, M. Kim, J.P. Shi, S. Sonde, L. Tao, Y.F. Zhang, J.C. Lee and D. Akinwande: Atomristor: Nonvolatile Resistance Switching in Atomic Sheets of Transition Metal Dichalcogenides. Nano Letters 18, 434 (2018).

    Article  CAS  Google Scholar 

  7. X. Yan, Q. Zhao, A.P. Chen, J. Zhao, Z. Zhou, J. Wang, H. Wang, L. Zhang, X. Li, Z. Xiao, K. Wang, C. Qin, G. Wang, Y. Pei, H. Li, D. Ren, J. Chen and Q. Liu: Vacancy- Induced Synaptic Behavior in 2D WS 2 Nanosheet–Based Memristor for Low- Power Neuromorphic Computing. Small, 1901423 (2019).

  8. K.M. Kim, J. Zhang, C. Graves, J.J. Yang, B.J. Choi, C.S. Hwang, Z. Li and R.S. Williams: Low-Power, Self-Rectifying, and Forming-Free Memristor with an Asymmetric Programing Voltage for a High-Density Crossbar Application. Nano Letters 16, 6724 (2016).

    Article  CAS  Google Scholar 

  9. Q. Chen, M. Lin, Z. Wang, X. Zhao, Y. Cai, Q. Liu, Y. Fang, Y. Yang, M. He and R. Huang: Low Power Parylene-Based Memristors with a Graphene Barrier Layer for Flexible Electronics Applications. Advanced Electronic Materials 0, 1800852.

  10. C.S. Hwang: Prospective of Semiconductor Memory Devices: from Memory System to Materials. Advanced Electronic Materials 1, 1400056 (2015).

    Article  Google Scholar 

  11. S.S. Sarwar, S.A.N. Saqueb, F. Quaiyum and A.B.M.H. Rashid: Memristor-Based Nonvolatile Random Access Memory: Hybrid Architecture for Low Power Compact Memory Design. IEEE Access 1, 29 (2013).

    Article  Google Scholar 

  12. M. Velicky, G.E. Donnelly, W.R. Hendren, S. McFarland, D. Scullion, W.J.I. DeBenedetti, G.C. Correa, Y. Han, A.J. Wain, M.A. Hines, D.A. Muller, K.S. Novoselov, H.D. Abruna, R.M. Bowman, E.J.G. Santos and F. Huang: Mechanism of Gold-Assisted Exfoliation of Centimeter-Sized Transition-Metal Dichalcogenide Monolayers. ACS Nano 12, 10463 (2018).

    Article  CAS  Google Scholar 

  13. S.B. Desai, S.R. Madhvapathy, M. Amani, D. Kiriya, M. Hettick, M. Tosun, Y. Zhou, M. Dubey, J.W. Ager, 3rd, D. Chrzan and A. Javey: Gold-Mediated Exfoliation of Ultralarge Optoelectronically-Perfect Monolayers. Adv Mater 28, 4053 (2016).

    Article  CAS  Google Scholar 

  14. C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K.L. Shepard and J. Hone: Boron nitride substrates for high-quality graphene electronics. Nature Nanotechnology 5, 722 (2010).

    Article  CAS  Google Scholar 

  15. D.H. Tien, J.-Y. Park, K.B. Kim, N. Lee, T. Choi, P. Kim, T. Taniguchi, K. Watanabe and Y. Seo: Study of Graphene-based 2D-Heterostructure Device Fabricated by All-Dry Transfer Process. ACS Applied Materials & Interfaces 8, 3072 (2016).

    Article  CAS  Google Scholar 

  16. M. Ishigami, J.H. Chen, W.G. Cullen, M.S. Fuhrer and E.D. Williams: Atomic Structure of Graphene on SiO2. Nano Letters 7, 1643 (2007).

    Article  CAS  Google Scholar 

  17. W. Chen, V. Madhavan, T. Jamneala and M.F. Crommie: Scanning Tunneling Microscopy Observation of an Electronic Superlattice at the Surface of Clean Gold. Physical Review Letters 80, 1469 (1998).

    Article  CAS  Google Scholar 

  18. S. Ernst, S. Wirth, M. Rams, V. Dolocan and F. Steglich: Tip preparation for usage in an ultra-low temperature UHV scanning tunneling microscope. Science and Technology of Advanced Materials 8, 347 (2007).

    Article  CAS  Google Scholar 

  19. C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone and S. Ryu: Anomalous Lattice Vibrations of Single- and Few-Layer MoS2. ACS Nano 4, 2695 (2010).

    CAS  Google Scholar 

  20. A.C. Ferrari: Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Communications 143, 47 (2007).

    Article  CAS  Google Scholar 

  21. D. Di Felice, E. Abad, C. González, A. Smogunov and Y.J. Dappe: Angle dependence of the local electronic properties of the graphene/MoS2interface determined byab initiocalculations. Journal of Physics D: Applied Physics 50 (2017).

  22. Y. Chen, S. Huang, X. Ji, K. Adepalli, K. Yin, X. Ling, X. Wang, J. Xue, M. Dresselhaus, J. Kong and B. Yildiz: Tuning Electronic Structure of Single Layer MoS2 through Defect and Interface Engineering. ACS Nano 12, 2569 (2018).

    Article  CAS  Google Scholar 

  23. J.A. Miwa, M. Dendzik, S.S. Grønborg, M. Bianchi, J.V. Lauritsen, P. Hofmann and S. Ulstrup: Van der Waals Epitaxy of Two-Dimensional MoS2–Graphene Heterostructures in Ultrahigh Vacuum. ACS Nano 9, 6502 (2015).

    Article  CAS  Google Scholar 

  24. C. Zhang, A. Johnson, C.-L. Hsu, L.-J. Li and C.-K. Shih: Direct Imaging of Band Profile in Single Layer MoS2 on Graphite: Quasiparticle Energy Gap, Metallic Edge States, and Edge Band Bending. Nano Letters 14, 2443 (2014).

    Article  CAS  Google Scholar 

  25. J. Fang, W.G. Vandenberghe and M.V. Fischetti: Microscopic dielectric permittivities of graphene nanoribbons and graphene. Physical Review B 94, 045318 (2016).

    Article  Google Scholar 

  26. E.J.G. Santos and E. Kaxiras: Electrically Driven Tuning of the Dielectric Constant in MoS2 Layers. ACS Nano 7, 10741 (2013).

    Article  CAS  Google Scholar 

  27. K. Kumar, Y.-S. Kim and E.-H. Yang: The influence of thermal annealing to remove polymeric residue on the electronic doping and morphological characteristics of graphene. Carbon 65, 35 (2013).

    Article  CAS  Google Scholar 

  28. G. Kukucska and J. Koltai: Theoretical Investigation of Strain and Doping on the Raman Spectra of Monolayer MoS 2, (2017).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thompson, J.E., Blue, B.T., Smalley, D. et al. STM Tip-Induced Switching in Molybdenum Disulfide-Based Atomristors. MRS Advances 4, 2609–2617 (2019). https://doi.org/10.1557/adv.2019.322

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2019.322

Navigation