Skip to main content
Log in

Strain-controlled Graphene-Polymer Angular Actuator

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

We demonstrate a suspended graphene-(poly(methyl methacrylate) (PMMA) polymer angular displacement actuator enabled by variable elastic modulus of the perforated stacked structure. Azimuthal flexures support a central disc-shaped membrane, and compression of the membrane can be used to control the rotation of the entire structure. Irradiating the PMMA on graphene stack with 5 kV electrons in a convention scanning electron microscope reduces the elastic modulus of the PMMA and allows graphene’s built in strain to dominate and compress the flexures, thus rotating the actuator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Miller and B. Alemán, “Shape tailoring to enhance and tune the properties of graphene nanomechanical resonators,” 2D Mater., vol. 4, no. 2, p. 25101, May 2017.

    Article  Google Scholar 

  2. Melina K. Blees, Arthur W. Barnard, Peter A. Rose, Samantha P. Roberts, Kathryn L. McGill, Pinshane Y. Huang, Alexander R. Ruyack, Joshua W. Kevek, Bryce Kobrin, David A. Muller & Paul L. McEuen, “Graphene kirigami,” Nature, vol. 524, no. 7564, pp. 204–207, Aug. 2015.

    Article  CAS  Google Scholar 

  3. Marc Z. Miskin, Kyle J. Dorsey, Baris Bircan, Yimo Han, David A. Muller, Paul L. McEuen, and Itai Cohen, “Graphene-based bimorphs for micron-sized, autonomous origami machines.,” Proc. Natl. Acad. Sci. U. S. A., vol. 115, no. 3, pp. 466–470, Jan. 2018.

    Article  CAS  Google Scholar 

  4. S. Matt Gilbert, Gabriel Dunn, Amin Azizi, Thang Pham, Brian Shevitski, Edgar Dimitrov, Stanley Liu, Shaul Aloni and Alex Zettl, “Fabrication of Subnanometer-Precision Nanopores in Hexagonal Boron Nitride,” Sci. Rep., vol. 7, no. 1, p. 15096, Dec. 2017.

    Article  Google Scholar 

  5. S. M. Gilbert, S. Liu, G. Schumm, and A. Zettl, “Nanopatterning Hexagonal Boron Nitride with Helium Ion Milling: Towards Atomically-Thin, Nanostructured Insulators,” in MRS Advances, vol. 3, no. 6–7, pp. 327–331 2018.

    Article  CAS  Google Scholar 

  6. S. O. Cho and H. Y. Jun, “Surface hardening of poly(methyl methacrylate) by electron irradiation,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol. 237, no. 3–4, pp. 525–532, Aug. 2005.

    Article  CAS  Google Scholar 

  7. J. S. Papanu, D. W. Hess, D. S. Soane (Soong), and A. T. Bell, “Swelling of poly(methyl methacrylate) thin films in low molecular weight alcohols,” J. Appl. Polym. Sci., vol. 39, no. 4, pp. 803–823, Feb. 1990.

    Article  CAS  Google Scholar 

  8. Y. Jin, D. Harrington, A. A. Rachford, and J. J. Rack, “Stimulating changes in the elastic modulus of polymer materials by molecular photochromism,” RSC Adv., vol. 4, no. 108, pp. 62920–62925, Nov. 2014.

    Article  CAS  Google Scholar 

  9. A. A. Abdel-Wahab, S. Ataya, and V. V. Silberschmidt, “Temperature-dependent mechanical behaviour of PMMA: Experimental analysis and modelling,” Polym. Test., vol. 58, pp. 86–95, Apr. 2017.

    Article  CAS  Google Scholar 

  10. W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. F. Crommie, and A. Zettl, “Boron nitride substrates for high mobility chemical vapor deposited graphene,” Appl. Phys. Lett., vol. 98, no. 24, p. 242105, Jun. 2011.

    Article  Google Scholar 

  11. Xuesong Li, Weiwei Cai, Jinho An, Seyoung Kim, Junghyo Nah, Dongxing Yang, Richard Piner, Aruna Velamakanni, Inhwa Jung, Emanuel Tutuc, Sanjay K. Banerjee, Luigi Columbo, Rodney S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils.,” Science, vol. 324, no. 5932, pp. 1312–4, Jun. 2009.

    Article  CAS  Google Scholar 

  12. Changyao Chen and J. Hone, “Graphene nanoelectromechanical systems,” Proc. IEEE, vol. 101, no. 7, pp. 1766–1779, Jul. 2013.

    Article  CAS  Google Scholar 

  13. C. Chen et al., “Performance of monolayer graphene nanomechanical resonators with electrical readout,” Nat. Nanotechnol., vol. 4, no. 12, pp. 861–867, Dec. 2009.

    Article  CAS  Google Scholar 

  14. Benjamin Alemán, Michael Rousseas, Yisheng Yang, Will Regan, Michael Crommie, Feng Wang, Alex Zettl, “Polymer-free, low tension graphene mechanical resonators,” Phys. status solidi - Rapid Res. Lett., vol. 7, no. 12, pp. 1064–1066, Dec. 2013.

    Article  Google Scholar 

  15. H. I. Rasool, C. Ophus, W. S. Klug, A. Zettl, and J. K. Gimzewski, “Measurement of the intrinsic strength of crystalline and polycrystalline graphene,” Nat. Commun., vol. 4, no. 1, p. 2811, Dec. 2013.

    Article  Google Scholar 

  16. K. Zhang and M. Arroyo, “Understanding and strain-engineering wrinkle networks in supported graphene through simulations,” J. Mech. Phys. Solids, vol. 72, pp. 61–74, Dec. 2014.

    Article  CAS  Google Scholar 

  17. S.-E. Zhu, M. Krishna Ghatkesar, C. Zhang, and G. C. A. M. Janssen, “Graphene based piezoresistive pressure sensor,” Appl. Phys. Lett., vol. 102, no. 16, p. 161904, Apr. 2013.

    Article  Google Scholar 

  18. A. D. Smith, F. Niklaus, A. Paussa, S. Vaziri, A.C. Fischer, M. Sterner, F. Forsberg, A. Delin, D. Esseni, P. Palestri, M. Ostling, and M.C. Lemme, “Electromechanical Piezoresistive Sensing in Suspended Graphene Membranes,” Nano Lett., vol. 13, no. 7, pp. 3237–3242, Jul. 2013.

    Article  CAS  Google Scholar 

  19. M. Kumar and H. Bhaskaran, “Ultrasensitive Room-Temperature Piezoresistive Transduction in Graphene-Based Nanoelectromechanical Systems,” Nano Lett., vol. 15, no. 4, pp. 2562–2567, Apr. 2015.

    Article  CAS  Google Scholar 

  20. Tetsuhiko F. Teshima, Calum S. Henderson, Makoto Takamura, Yui Ogawa, Shengnan Wang, Yoshiaki Kashimura, Satoshi Sasaki, Toichiro Goto, Hiroshi Nakashima, and Yuko Ueno, “Self-Folded Three-Dimensional Graphene with a Tunable Shape and Conductivity,” Nano Lett., vol. 19, no. 1, pp. 461–470, Jan. 2019.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gilbert, S.M., Molnar, A., Horton-Bailey, D. et al. Strain-controlled Graphene-Polymer Angular Actuator. MRS Advances 4, 2161–2167 (2019). https://doi.org/10.1557/adv.2019.276

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2019.276

Navigation