Skip to main content
Log in

Rapid Synthesis of Monodispersed TATB Microparticles in Ionic Liquid Micelles

  • Articles
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Controlling microscopic morphology of energetic materials is of significant interest for the improvement of their performance and production consistency. As an important insensitive high explosive material, triaminotrinitrobenzene (TATB) has attracted tremendous research effort for military grade explosives and propellants. In this study, a new, rapid and inexpensive synthesis method for monodispersed TATB microparticles based on micelle-confined precipitation was developed. Surfactant with proper hydrophilic-lipophilic balance value was found to be critical to the success of this synthesis. The morphology of the TATB microparticles can be tuned between quasi-spherical and faceted by controlling the speed of recrystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ghosh, V. Venkatesan, S. Mandave, S. Banerjee, N. Sikder, A. K. Sikder and B. Bhattacharya, Cryst. Growth Des. 14, 5053 (2014).

    Article  CAS  Google Scholar 

  2. S.F. Rice and R.L. Simpson, The Unusual Stability of TATB: A Review of the Scientific Literature, Lawrence Livermore National Laboratory, Livermore, CA (1990).

    Google Scholar 

  3. B. M. Dobratz, The Insensitive High Explosive Triaminotrinitrobenzene (TATB): Development and Characterization, Los Alamos Scientific Laboratory, Los Alamos, NM (1995).

  4. W. E. Voreck, J. Eberhardt and H.A. Rezaie, U.S. Patent No. 5597974 A (28 Jan 1997)

  5. R. Thorpe and W. R. Feairheller, Development of Processes for Reliable Detonator Grade Very Fine Secondary Explosive Powders, Monsanto Research Corporation, Miamisburg, OH (1988).

    Google Scholar 

  6. D. W. Firsich, R. Thorpe and L. A. Cox, TATB Purification and Particle Size Modification: An Evaluation of Processing Options, Mount Laboratory, Miamisburg, OH (1990).

    Google Scholar 

  7. G. Yang, F. Nie, H. Huang, L. Zhao and W. Pang, Propellants Explos. Pyrotech. 31, 390 (2006).

    Article  CAS  Google Scholar 

  8. T. Y. Han, P. F. Pagoria, A. E. Gash, A. Maiti, C. A. Orme, A. R. Mitchell and L. E. Fried, New J. Chem 33, 50 (2008).

    Article  Google Scholar 

  9. M. Foltz, D. Ornellas, P. Pagoria and A. Mitchell, J. Mater. Sci. 31, 1893 (1996).

    Article  CAS  Google Scholar 

  10. M. B. Talawar, A. P. Agarwal, M. Anniyappan, G. M. Gore, S. N. Asthana and S. Venugopalan, J. Hazard. Mater. 137, 1848 (2006).

    Article  CAS  Google Scholar 

  11. L. Yang, X. T. Ren, T. C. Li, S. W. Wang and T. L. Zhang, Chin. J. Chem. 30, 293 (2012).

    Article  CAS  Google Scholar 

  12. X. Tan, X. Duan, C. Pei and H. Xu, Nano 8, 573 (2013).

    Article  Google Scholar 

  13. F. Bai, Z. Sun, H. Wu, R. E. Haddad, E. N. Coker, J. Y. Huang, M. A. Rodriguez and H. Fan, Nano Lett. 11, 5196 (2011).

    Article  CAS  Google Scholar 

  14. Y. Zhong, Z. Wang, R. Zhang, F. Bai, H. Wu, R. Haddad and H. Fan, ACS Nano 8, 827 (2014).

    Article  CAS  Google Scholar 

  15. K. Bian, L. Alarid, D. Rosenberg and H. Fan, MRS Adv. online, (2018).

  16. H. Cady and A. Larson, Acta Cryst. 18, 485 (1965).

    Article  CAS  Google Scholar 

  17. H. Zhang, J. Xu, Y. Liu, H. Huang and J. Sun. AIP Adv. 3, 092101 (2013).

    Article  Google Scholar 

  18. G. Filippini and A. Gavezzotti, Chem. Phys. Lett. 231, 86 (1994).

    Article  CAS  Google Scholar 

  19. G. Yang, F. Nie, H. Huang, L. Zhao and W. Pang, Propellants Explos. Pyrotech. 31, 390 (2006).

    Article  CAS  Google Scholar 

  20. M. Foltz, J. Maienschein and L. Green, J. Mater. Sci. 31, 1741 (1996).

    Article  CAS  Google Scholar 

  21. W. Griffin, J. Soc. Cosm. Chem. 1, 311 (1949).

    Google Scholar 

  22. W. Griffin, J. Soc. Cosm. Chem. 5, 249 (1954).

    Google Scholar 

  23. J. Davies, A quantitative kinetic theory of emulsion type, I. Physical chemistry of the emulsifying agent, Proceedings of International Congress of Surface Activity, (1957), pp. 426.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karler, C., Alarid, L., Rosenberg, D. et al. Rapid Synthesis of Monodispersed TATB Microparticles in Ionic Liquid Micelles. MRS Advances 4, 843–849 (2019). https://doi.org/10.1557/adv.2018.623

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2018.623

Navigation