Skip to main content
Log in

The Effect of Silver Ion Occupancy on Hollandite Lattice Structure

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

The effect of tunnel cations on tunnel size in α-MnO2 structured (hollandite, cryptomelane) materials has long been of interest, as the tunnel size effects catalytic and transport properties. Previous research on the tunnel size has focused on potassium cryptomelane (KxMn8O16). This paper uses synthetic control of silver content in AgxMn8O16 to investigate the effect that tunnel silver occupancy has on the lattice parameters. Materials with silver (x) content between 1.14 and 1.66 were synthesized, synchrotron diffraction and Rietveld Refinement was used to determine lattice parameters. The lattice parameters were found to contract as silver content increases (from 9.774 Å to 9.738 Å), in contrast to previous investigations of other tunnel cations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Byström and A. M. Byström, Acta Crystallographica 3 (2), 146–154 (1950).

    Google Scholar 

  2. L. Ramsdell, Am. Mineral 27 (9), 610–613 (1942).

    CAS  Google Scholar 

  3. J. GnuNrn, Amer. Mineral 28 (1943).

    Google Scholar 

  4. S. Dharmarathna, C. K. King’ondu, W. Pedrick, L. Pahalagedara and S. L. Suib, Chemistry of Materials 24 (4), 705–712 (2012).

    CAS  Google Scholar 

  5. H. Huang, S. Sithambaram, C.-H. Chen, C. King’ondu Kithongo, L. Xu, A. Iyer, H. F. Garces and S. L. Suib, Chemistry of Materials 22 (12), 3664–3669 (2010).

    CAS  Google Scholar 

  6. A. Dyer, M. Pillinger, J. Newton, R. Harjula, T. Möller and S. Amin, Chemistry of materials 12 (12), 3798–3804 (2000).

    CAS  Google Scholar 

  7. L. Li and D. L. King, Chemistry of materials 17 (17), 4335–4343 (2005).

    CAS  Google Scholar 

  8. E. Nicolas-Tolentino, Z.-R. Tian, H. Zhou, G. Xia and S. L. Suib, Chemistry of Materials 11 (7), 1733–1741 (1999).

    CAS  Google Scholar 

  9. M. Tsuji and S. Komarneni, Journal of Materials Research 8 (3), 611–616 (1993).

    CAS  Google Scholar 

  10. K. J. Takeuchi, S. Z. Yau, M. C. Menard, A. C. Marschilok and E. S. Takeuchi, ACS applied materials & interfaces 4 (10), 5547–5554 (2012).

    CAS  Google Scholar 

  11. S. Zhu, A. C. Marschilok, C.-Y. Lee, E. S. Takeuchi and K. J. Takeuchi, Electrochemical and Solid-State Letters 13 (8), A98–A100 (2010).

    CAS  Google Scholar 

  12. K. J. Takeuchi, S. Z. Yau, A. Subramanian, A. C. Marschilok and E. S. Takeuchi, Journal of The Electrochemical Society 160 (5), A3090–A3094 (2013).

    CAS  Google Scholar 

  13. J. Zhang and C. W. Burnham, American Mineralogist 79 (1–2), 168–174 (1994).

    CAS  Google Scholar 

  14. A. S. Poyraz, J. Huang, C. J. Pelliccione, X. Tong, S. Cheng, L. Wu, Y. Zhu, A. C. Marschilok, K. J. Takeuchi and E. S. Takeuchi, Journal of Materials Chemistry A 5 (32), 16914–16928 (2017).

    CAS  Google Scholar 

  15. L. Wu, F. Xu, Y. Zhu, A. B. Brady, J. Huang, J. L. Durham, E. Dooryhee, A. C. Marschilok, E. S. Takeuchi and K. J. Takeuchi, ACS nano 9 (8), 8430–8439 (2015).

    CAS  Google Scholar 

  16. F. M. Chang and M. Jansen, Revue De Chimie Minerales 23, 48–54 (1986).

    CAS  Google Scholar 

  17. F. M. Chang and M. Jansen, Angewandte Chemie International Edition 23 (11), 906–907 (1984).

    Google Scholar 

  18. J. Chen, X. Tang, J. Liu, E. Zhan, J. Li, X. Huang and W. Shen, Chemistry of materials 19 (17), 4292–4299 (2007).

    CAS  Google Scholar 

  19. K. J. Takeuchi, S. Z. Yau, M. C. Menard, A. C. Marschilok and E. S. Takeuchi, ACS Applied Materials & Interfaces 4 (10), 5547–5554 (2012).

    CAS  Google Scholar 

  20. J. E. Post, R. B. Von Dreele and P. R. Buseck, Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry 38 (4), 1056–1065 (1982).

    Google Scholar 

  21. A. P. Hammersley, S. O. Svensson, M. Hanfland, A. N. Fitch and D. Hausermann, High Pressure Research 14 (4–6), 235–248 (1996).

    Google Scholar 

  22. B. H. Toby and R. B. Von Dreele, Journal of Applied Crystallography 46 (2), 544–549 (2013).

    CAS  Google Scholar 

  23. I. Djerdj, D. Arčon, Z. Jagličić and M. Niederberger, The Journal of Physical Chemistry C 111 (9), 3614–3623 (2007).

    CAS  Google Scholar 

  24. E.-J. Lee, Z. Chen, H.-J. Noh, S. C. Nam, S. Kang, D. H. Kim, K. Amine and Y.-K. Sun, Nano Letters 14 (8), 4873–4880 (2014).

    CAS  Google Scholar 

  25. T. Barudžija, V. Kusigerski, N. Cvjetićanin, S. Šorgić, M. Perović and M. Mitrić, Journal of Alloys and Compounds 665, 261–270 (2016).

    Google Scholar 

  26. N. Kijima, T. Ikeda, K. Oikawa, F. Izumi and Y. Yoshimura, Journal of Solid State Chemistry 177 (4), 1258–1267 (2004).

    CAS  Google Scholar 

  27. J. Vicat, E. Fanchon, P. Strobel and D. Tran Qui, Acta Crystallographica Section B: Structural Science 42 (2), 162–167 (1986).

    Google Scholar 

  28. Y. D. Kondrashev and A. Zaslavskii, Izvestiya Akademii Nauk SSSR, Seriya Fizicheskaya 15, 179–186 (1951).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amy C. Marschilok or Kenneth J. Takeuchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brady, A.B., Huang, J., Durham, J.L. et al. The Effect of Silver Ion Occupancy on Hollandite Lattice Structure. MRS Advances 3, 547–552 (2018). https://doi.org/10.1557/adv.2018.238

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2018.238

Navigation