Skip to main content

Advertisement

Log in

Kinetics and Atomic Mechanisms of Structural Phase Transformations in Photoexcited Monolayer TMDCs

  • Articles
  • Published:
MRS Advances Aims and scope Submit manuscript

A Correction to this article was published on 19 September 2023

This article has been updated

Abstract

Rapid transitions between semiconducting and metallic phases of transition-metal dichalcogenides are of interest for 2D electronics applications. Theoretical investigations have been limited to using thermal energy, lattice strain and charge doping to induce the phase transition, but have not identified mechanisms for rapid phase transition. Here, we use density functional theory to show how optical excitation leads to the formation of a low-energy intermediate crystal structure along the semiconductor-metal phase transition pathway. This metastable crystal structure results in significantly reduced barriers for the semiconducting-metal phase transition pathway leading to rapid transition in optically excited crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. M. Chhowalla, D. Voiry, J. E. Yang, H. S. Shin, and K. P. Loh, Mrs Bull 40, 585 (2015).

    Article  CAS  Google Scholar 

  2. G. Eda, T. Fujita, H. Yamaguchi, D. Voiry, M. W. Chen, and M. Chhowalla, Acs Nano 6, 7311 (2012).

    Article  CAS  Google Scholar 

  3. K. A. N. Duerloo, Y. Li, and E. J. Reed, Nature Communications 5 (2014).

  4. C. M. Huang, S. Wu, A. M. Sanchez, J. J. P. Peters, R. Beanland, J. S. Ross, P. Rivera, W. Yao, D. H. Cobden and X. Xu, Nature Materials 13, 1096 (2014).

    Article  CAS  Google Scholar 

  5. A. L. Friedman, F. K. Perkins, A. T. Hanbicki, J. C. Culbertson, and P. M. Campbell, Nanoscale 8, 11445 (2016).

    Article  CAS  Google Scholar 

  6. R. Kappera, D. Voiry, S. E. Yalcin, B. Branch, G. Gupta, A. D. Mohite, and M. Chhowalla, Nature Materials 13, 1128 (2014).

    Article  CAS  Google Scholar 

  7. D. Voiry, H. Yamaguchi, J. Li, R. Silva, D. C. B. Alves, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda and M. Chhowalla, Nature Materials 12, 850 (2013).

    Article  CAS  Google Scholar 

  8. G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. W. Chen, and M. Chhowalla, Nano Letters 11, 5111 (2011).

    Article  CAS  Google Scholar 

  9. B. Radisavljevic and A. Kis, Nature Materials 12, 815 (2013).

    Article  CAS  Google Scholar 

  10. Y. C. Cheng, A. M. Nie, Q. Y. Zhang, L. Y. Gan, R. Shahbazian-Yassar, and U. Schwingenschlogl, Acs Nano 8, 11447 (2014).

    Article  CAS  Google Scholar 

  11. C. X. Zhang, K. C. Santosh, Y. Nie, C. Liang, W. G. Vandenberghe, R. C. Longo, Y. Zheng, F. Kong, S. Hong, R. M. Wallace, and K. Cho, ACS Nano 10, 7370 (2016).

    Article  CAS  Google Scholar 

  12. M. R. Ryzhikov, V. A. Slepkov, S. G. Kozlova, S. P. Gabuda, and V. E. Fedorov, J Comput Chem 36, 2131 (2015).

    Article  CAS  Google Scholar 

  13. A. N. Enyashin, L. Yadgarov, L. Houben, I. Popov, M. Weidenbach, R. Tenne, M. Bar-Sadan, and G. Seifert, Journal of Physical Chemistry C 115, 24586 (2011).

    Article  CAS  Google Scholar 

  14. F. Raffone, C. Ataca, J. C. Grossman, and G. Cicero, J Phys Chem Lett 7, 2304 (2016).

    Article  CAS  Google Scholar 

  15. M. Calandra, Physical Review B 88 (2013).

  16. B. Mortazavi, A. Ostadhossein, T. Rabczuk, and A. C. T. van Duin, Phys Chem Chem Phys 18, 23695 (2016).

    Article  CAS  Google Scholar 

  17. Y. Kang, S. Najmaei, Z. Liu, Y. Bao, Y. Wang, X. Zhu, N. J. Halas, P. Nordlander, P. M. Ajayan, J. Lou, and Z. Fang, Advanced Materials 26, 6467 (2014).

    Article  CAS  Google Scholar 

  18. Y. C. Lin, D. O. Dumcencon, Y. S. Huang, and K. Suenaga, Nat Nanotechnol 9, 391 (2014).

    Article  CAS  Google Scholar 

  19. S. Song, D. H. Keum, S. Cho, D. Perello, Y. Kim, and Y. H. Lee, Nano Letters 16, 188 (2016).

    Article  CAS  Google Scholar 

  20. L. F. Wang, Z. Xu, W. L. Wang, and X. D. Bai, Journal of the American Chemical Society 136, 6693 (2014).

    Article  CAS  Google Scholar 

  21. Y. Li, K. A. N. Duerloo, K. Wauson, and E. J. Reed, Nature Communications 7 (2016).

  22. E. M. Mannebach, R. Li, K. A. Duerloo, C. Nyby, P. Zalden, T. Vecchione, F. Ernst, A. H. Reid, T. Chase, X. Shen, S. Weathersby, C. Hast, R. Hettel, R. Coffee, N. Hartmann, A. R. Fry, Y. Yu, L. Cao, T. F. Heinz, E. J. Reed, H. A. Durr, X. Wang, and A. M. Lindenberg, Nano Letters 15, 6889 (2015).

    Article  Google Scholar 

  23. A. V. Kolobov, P. Fons, and J. Tominaga, Physical Review B 94 (2016).

  24. P. E. Blöchl, Physical Review B 50, 17953 (1994).

    Article  Google Scholar 

  25. G. Kresse and J. Furthmuller, Physical Review B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  26. G. Kresse and J. Furthmuller, Comp Mater Sci 6, 15 (1996).

    Article  CAS  Google Scholar 

  27. G. Henkelman, B. P. Uberuaga, and H. Jonsson, Journal of Chemical Physics 113, 9901 (2000).

    Article  CAS  Google Scholar 

  28. J. P. Perdew, K. Burke, and M. Ernzerhof, Physical Review Letters 77, 3865 (1996).

    Article  CAS  Google Scholar 

  29. H. H. Huang, X. F. Fan, D. J. Singh, H. Chen, Q. Jiang, and W. T. Zheng, Phys Chem Chem Phys 18, 4086 (2016).

    Article  CAS  Google Scholar 

  30. C. H. Naylor, W. M. Parkin, J. Ping, Z. Gao, Y. R. Zhou, Y. Kim, F. Streller, R. W. Carpick, A. M. Rappe, M. Drndi, J. M. Kikkawa, and A. T. C. Johnson, Nano Letters 16, 4297 (2016).

    Article  CAS  Google Scholar 

  31. D. N. Esfahani, O. Leenaerts, H. Sahin, B. Partoens, and F. M. Peeters, Journal of Physical Chemistry C 119, 10602 (2015).

    Article  Google Scholar 

  32. M. Pandey, P. Bothra, and S. K. Pati, Journal of Physical Chemistry C 120, 3776 (2016).

    Article  CAS  Google Scholar 

  33. J. Bang, S. Meng, Y. Y. Sun, D. West, Z. G. Wang, F. Gao, and S. B. Zhang, Proceedings of the National Academy of Sciences of the United States of America 110, 908 (2013).

    Article  CAS  Google Scholar 

  34. G. Kolesov, D. Vinichenko, G. A. Tritsaris, C. M. Friend, and E. Kaxiras, J Phys Chem Lett 6, 1624 (2015).

    Article  CAS  Google Scholar 

  35. C. R. Bealing and R. Ramprasad, Journal of Chemical Physics 139 (2013).

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article was updated to correct Lindsay Bassman Oftelie’s name.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnamoorthy, A., Bassman Oftelie, L., Kalia, R.K. et al. Kinetics and Atomic Mechanisms of Structural Phase Transformations in Photoexcited Monolayer TMDCs. MRS Advances 3, 345–350 (2018). https://doi.org/10.1557/adv.2018.122

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2018.122

Navigation