Skip to main content
Log in

Thermoelectric Performance Study of Graphene Antidot Lattices on Different Substrates

  • Article
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Pristine graphene has low thermoelectric performance due to its ultra-high thermal conductivity and a low Seebeck coefficient, the latter of which results from the zero-band gap of graphene. To improve the thermoelectric performance of graphene-based materials, various methods have been proposed to open a band gap in graphene. Graphene antidot lattices is one of the most effective methods to reach this goal by patterning periodic nano- or sub-1-nm pores (antidots) across graphene. In high-porosity graphene antidot lattices, charge carriers mainly flow through the narrow necks between pores, forming a comparable case as graphene nanoribbons. This will open a geometry-dependent band gap and dramatically increase the Seebeck coefficient. The antidots also strongly scatter phonons, leading to a dramatically reduced lattice thermal conductivity to further enhance the thermoelectric performance. In computations, the thermoelectric figure of merit of a graphene antidot lattices was predicted to be around 1.0 at 300 K but experimental validation is still required. The electrical conductivity and Seebeck coefficient of graphene antidot lattices on various substrates including SiO2, SiC and hexagonal boron nitride were measured. The antidots were drilled with a focused ion beam or reactive ion etching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. J. Goldsmid, Thermoelectric Refrigeration. (Plenum, New York, 1964).

    Book  Google Scholar 

  2. J. Yang and F. R. Stabler, Journal of Electronic Materials 38 (7), 1245–1251 (2009).

    Article  CAS  Google Scholar 

  3. D. Kraemer, B. Poudel, H. P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren and G. Chen, Nature Materials 10 (7), 532–538 (2011).

    Article  CAS  Google Scholar 

  4. K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva and A. Firsov, Science 306 (5696), 666–669 (2004).

    Article  CAS  Google Scholar 

  5. K. Novoselov, A. K. Geim, S. Morozov, D. Jiang, M. K. I. Grigorieva, S. Dubonos and A. Firsov, Nature 438 (7065), 197–200 (2005).

    Article  CAS  Google Scholar 

  6. D. Jariwala, A. Srivastava and P. M. Ajayan, Journal of Nanoscience and Nanotechnology 11 (8), 6621–6641 (2011).

    Article  CAS  Google Scholar 

  7. Y. Yan, Q.-F. Liang, H. Zhao, C.-Q. Wu and B. Li, Physics Letters A 376 (35), 2425–2429 (2012).

    Article  CAS  Google Scholar 

  8. H. Karamitaheri, M. Pourfath, R. Faez and H. Kosina, Journal of Applied Physics 110 (5), 054506 (2011).

    Article  Google Scholar 

  9. T. Gunst, T. Markussen, A.-P. Jauho and M. Brandbyge, Physical Review B 84 (15), 155449 (2011).

    Article  Google Scholar 

  10. T. Gunst, L. Jing-Tao, T. Markussen, A. Jauho and M. Brandbyge, presented at the 2012 15th International Workshop on Computational Electronics (IWCE), Madison, USA, 2012 (unpublished).

  11. D. Wu, Z. Yu, J. Xiao and F. Ouyang, Physica E: Low-dimensional Systems and Nanostructures 43 (1), 33–39 (2010).

    Article  CAS  Google Scholar 

  12. H. Zhang, Z.-X. Guo, W. Zhao, X. Gong and J. Cao, Journal of the Physical Society of Japan 81 (11), 114601 (2012).

    Article  Google Scholar 

  13. J. Robillard, K. Muralidharan, J. Bucay, P. Deymier, W. Beck and D. Barker, Chinese Journal of Physics 49, 448–461 (2011).

    CAS  Google Scholar 

  14. K. L. Grosse, M.-H. Bae, F. Lian, E. Pop and W. P. King, Nature Nanotechnology 6 (5), 287–290 (2011).

    Article  CAS  Google Scholar 

  15. J. Oh, H. Yoo, J. Choi, J. Y. Kim, D. S. Lee, M. J. Kim, J.-C. Lee, W. N. Kim, J. C. Grossman, J. H. Park, S.-S. Lee, H. Kim and J. G. Son, Nano Energy 35, 26–35 (2017).

    Article  CAS  Google Scholar 

  16. W. Zhu, T. Low, V. Perebeinos, A. A. Bol, Y. Zhu, H. Yan, J. Tersoff and P. Avouris, Nano Letters 12 (7), 3431–3436 (2012).

    Article  CAS  Google Scholar 

  17. A. Sandner, T. Preis, C. Schell, P. Giudici, K. Watanabe, T. Taniguchi, D. Weiss and J. Eroms, Nano Letters 15 (12), 8402–8406 (2015).

    Article  CAS  Google Scholar 

  18. R. Yagi, R. Sakakibara, R. Ebisuoka, J. Onishi, K. Watanabe, T. Taniguchi and Y. Iye, Physical Review B 92 (19), 195406 (2015).

    Article  Google Scholar 

  19. H. J. Goldsmid, Introduction to Thermoelectricity. (Springer, Berlin, 2010).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, Q., Xu, D., Ruden, X. et al. Thermoelectric Performance Study of Graphene Antidot Lattices on Different Substrates. MRS Advances 2, 3645–3650 (2017). https://doi.org/10.1557/adv.2017.509

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2017.509

Navigation