Skip to main content
Log in

Formation of Insulating Oxide Films with Hydrolysis Reactions of Alkoxide Precursors in Supercritical Fluid CO2: Chemistry, Morphology, Characterization and Film Thickness

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Insulating silicon dioxide (SiO2) films can be produced by hydrolysis of metal alkoxide tetraethylorthosilicate (TEOS) in the presence of an acid catalyst in supercritical fluid CO2 (sc-CO2). In this study, SiO2 films are formed on different substrates using TEOS as a source of silicon, and acetic acid (HAc) as a catalyst. Water required for the hydrolysis reaction is from in situ generation of esterification and condensation reactions involving HAc and the alcohol produced. The acid catalyzed deposition reaction actually starts at room temperature but produces decent films in sc-CO2 at moderately high temperatures (e.g. 50 °C). Supercritical fluid CO2 is known to have near zero surface tension and provides an ideal medium for fabrication of SiO2 films. Formation of SiO2 films via hydrolysis reaction in sc-CO2 is more rapid compared to the traditional hydrolysis reaction at room temperature. In general, metal alkoxide hydrolysis reactions carried out in a closed sc-CO2 system is not affected by moisture in air compared with traditional open-air hydrolysis systems. Using sc-CO2 as a reaction medium can eliminate undesirable organic solvents utilized in traditional alkoxide hydrolysis reactions.

X-ray diffraction (XRD) and electron diffraction (ED) measurements demonstrated that the SiO2 films produced are amorphous. Energy dispersive spectroscopy (EDS), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) and X-ray photoelectron (XPS) spectroscopy show elemental compositions of the films formed on the substrate surfaces to be SiO2. Film thickness formation by controlling the amount of the catalyst is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Perucchi, L. Baldassarre, P. Postorino and S. Lupi, J. Phys. : Condensed Matter, 21, 323202 (2009).

    CAS  Google Scholar 

  2. M. Izumi, Y. Murakami, Y. Konishi, T. Manako, M. Kawasaki and Y. Tokura, Phys. Rev. B 60, 1211 (1999).

    Article  CAS  Google Scholar 

  3. M. K. Gangishetty, R. W. J. Scott and Timothy L. Kelly, Langmuir 30, 14352 (2014).

    Article  CAS  Google Scholar 

  4. S. Takenaka, H. Matsumori, K. Nakagawa, H. Matsune, E. Tanabe and M. Kishida, J. Phys. Chem. C 111, 15133 (2007).

    Article  CAS  Google Scholar 

  5. H. Chen, T. Ming, S. Zhang, Z. Jin, B. Yang and J. Wang, ACS Nano 5, 4865 (2011).

    Article  CAS  Google Scholar 

  6. M. H. Park, Y. J. Jang, H. M. Sung-Suh and M. M. Sung, Langmuir 20, 2257 (2004).

    Article  CAS  Google Scholar 

  7. D.A. Racke, L.L. Kelly, H. Kim, P. Schulz, A. Sigdel, J.J. Berry, S. Graham, D. Nordlund and O.L.A. Monti, J. Phys. Chem. Lett. 6, 1935, (2015).

    Article  CAS  Google Scholar 

  8. A. Hozumi, S. Kojima, S. Nagano, T. Seki, N. Shirahata and T. Kameyama, Langmuir 23, 3265 (2007).

    Article  CAS  Google Scholar 

  9. Z. Chen, W. Li, R. Li, Y. Zhang, G. Xu and H. Cheng, Langmuir 29, 13836 (2013).

    Article  CAS  Google Scholar 

  10. K. Xu and J. R. Heath, Nano Lett. 8, 3845 (2008).

    Article  CAS  Google Scholar 

  11. J. S. Wang, C. M. Wai, G. J. Brown and S. D. Apt. RSC Adv. 5, 74753 (2015).

    Article  CAS  Google Scholar 

  12. J. W. Stouwdam, J. N. Shan and F.C.J.M. van Veggel, J. Phys. Chem. C 111, 1086 ((2007).

    Article  CAS  Google Scholar 

  13. R. Ihly, J. Tolentino, Y. Liu, M. Gibbs and M. Law, ACS Nano 5, 8175 (2011).

    Article  CAS  Google Scholar 

  14. M. Nanu, J. Schoonman and A. Goossens, Adv. Mater. 16, 453 (2004).

    Article  CAS  Google Scholar 

  15. A. Pourret, P.G. Sionnest and J.W. Elan, Adv. Mater. 21, 232 (2001).

    Article  Google Scholar 

  16. A. M. Buckley and M. Greenblatt, J. Chem. Edu.,71, 599 (1994).

    Article  CAS  Google Scholar 

  17. B. Karmakar, G. De and D. Ganguli, J. Non-Cryst Solids 272, 119 (2000).

    Article  CAS  Google Scholar 

  18. S. S. Jada, J. Am. Ceram. Soc., 70, C-298 (1987).

    Article  CAS  Google Scholar 

  19. A. N. Sabirzyanov, A. P. Il’in, A. P. Akhunov and F. M. Gumerov, High Temperature, 40, 203 (2002).

    Article  Google Scholar 

  20. E. J. A. Pope and J. D. Mackenzie, J. Non-Cryst. Solids 87, 185 (1986).

    Article  CAS  Google Scholar 

  21. P. A. Charpentier, X. S. Li and R. H. Sui, Langmuir 25, 3748 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J.S., Wai, C.M., Brown, G.J. et al. Formation of Insulating Oxide Films with Hydrolysis Reactions of Alkoxide Precursors in Supercritical Fluid CO2: Chemistry, Morphology, Characterization and Film Thickness. MRS Advances 1, 2591–2596 (2016). https://doi.org/10.1557/adv.2016.269

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2016.269

Navigation