Skip to main content
Log in

In situ and tomographic characterization of damage and dislocation processes in irradiated metallic alloys by transmission electron microscopy

  • Invited Reviews
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Progress toward combining time-resolved experiments with periodic three-dimensional analysis of the evolved microstructural state has been made recently. In situ electron microscopy is used to observe in real time the development of irradiation defects and the influence of these defects on dislocation behavior. Three-dimensional characterization provides information on the true spatial distribution of defects and clarifies effects of the free surfaces in thin films. This quasi-four dimensional analysis approach has been applied to understand the formation of channels in irradiated alloys, the depth distribution of ion damage in an electron transparent foil, and the dislocation channel interactions with grain boundaries. The new insight obtained from these experiments is highlighted and contrasted with findings from simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. G.R. Odette and G.E. Lucas: Embrittlement of nuclear reactor pressure vessels. JOM 53(7), 18 (2001).

    Article  CAS  Google Scholar 

  2. A. Arsenlis, B.D. Wirth, and M. Rhee: Dislocation density-based constitutive model for the mechanical behaviour of irradiated Cu. Philos. Mag. 84(34), 3617 (2004).

    Article  CAS  Google Scholar 

  3. K. Fukuya: Current understanding of radiation-induced degradation in light water reactor structural materials. J. Nucl. Sci. Technol. 50(3–4), 213 (2013).

    Article  CAS  Google Scholar 

  4. M.J. Makin and F.J. Minter: The mechanical properties of irradiated niobium. Acta Metall. 7(6), 361 (1959).

    Article  CAS  Google Scholar 

  5. A.W. McReynolds, W. Augustyniak, M. McKeown, and D.B. Rosenblatt: Neutron irradiation effects in Cu and Al at 80 K. Phys. Rev. 98(2), 418 (1955).

    Article  CAS  Google Scholar 

  6. J.V. Sharp: Deformation of neutron-irradiated copper single crystals. Philos. Mag. 16, 77 (1967).

    Article  CAS  Google Scholar 

  7. I. Charit and K.L. Murty: Structural materials issues for the next generation fission reactors. JOM 62(9), 67 (2010).

    Article  CAS  Google Scholar 

  8. B.L. Eyre and A.F. Bartlett: An electron microscope study of neutron irradiation damage in alpha-iron. Philos. Mag. 12, 261 (1965).

    Article  Google Scholar 

  9. G.S. Was and S.M. Bruemmer: Effects of irradiation on intergranular stress corrosion cracking. In Fundamentals of Radiation Damage: Proceedings of the International Summer School on the Fundamentals of Radiation Damage, Urbana, IL, August 1–12, 1993, Vol. 216, 1994; p. 326.

    CAS  Google Scholar 

  10. E.A. West, M.D. McMurtrey, J. Zhijie, and G.S. Was: Role of localized deformation in irradiation-assisted stress corrosion cracking initiation. Metall. Mater. Trans. A 43(1), 136 (2012).

    Article  CAS  Google Scholar 

  11. E.R. Gilbert, B.A. Chin, and D.R. Duncan: Effect of irradiation on failure mode during creep. Metall. Trans. A 18A(1), 79 (1987).

    Article  Google Scholar 

  12. I. Chant and K.L. Murty: Structural materials issues for the next generation fission reactors. JOM 62(9), 67 (2010).

    Article  CAS  Google Scholar 

  13. M. Kirk, C. Santos, E. Eason, J. Wright, and G.R. Odette: Updated embrittlement trend curve for reactor pressure vessel steels. In Structural Mechanics in Reactor Technology, 2003.

  14. A. Souidi, M. Hou, C.S. Becquart, L. Malerba, C. Domain, and R.E. Stoller: On the correlation between primary damage and long-term nanostructural evolution in iron under irradiation. J. Nucl. Mater. 419(1–3), 122 (2011).

    Article  CAS  Google Scholar 

  15. R.E. Stoller, G.R. Odette, and B.D. Wirth: Primary damage formation in bcc iron. J. Nucl. Mater. 251, 49 (1997).

    Article  CAS  Google Scholar 

  16. J. Kacher and I.M. Robertson: Quasi-four-dimensional analysis of dislocation interactions with grain boundaries in 304 stainless steel. Acta Mater. 60(19), 6657 (2012).

    Article  CAS  Google Scholar 

  17. J. Kacher and I.M. Robertson: In situ and tomographic analysis of dislocation/grain boundary interactions in titanium. Philos. Mag. 94(8), 814 (2014).

    Article  CAS  Google Scholar 

  18. J.P. Kacher, G.S. Liu, and I.M. Robertson: Visualization of grain boundary/dislocation interaction using tomographic reconstructions. Scr. Mater. 64, 677 (2011).

    Article  CAS  Google Scholar 

  19. D. Xu, B.D. Wirth, M. Li, and M.A. Kirk: Combining in situ transmission electron microscopy irradiation experiments with cluster dynamics modeling to study nanoscale defect agglomeration in structural metals. Acta Mater. 60(10), 4286 (2012).

    Article  CAS  Google Scholar 

  20. D. Bufford, S.H. Pratt, T.J. Boyle, and K. Hattar: In situ TEM ion irradiation and implantation effects on Au nanoparticle morphologies. Chem. Commun. 50(57), 7593 (2014).

    Article  CAS  Google Scholar 

  21. J. Kacher, G.S. Liu, and I.M. Robertson: In situ and tomographic observations of defect free channel formation in ion irradiated stainless steels. Micron 43(11), 1099 (2012).

    Article  CAS  Google Scholar 

  22. J.S. Barnard, J. Sharp, J.R. Tong, and P.A. Midgley: Weak-beam dark-field electron tomography of dislocations in GaN. J. Phys.: Conf. Ser. 26, 247 (2006).

    Google Scholar 

  23. J.S. Barnard, J. Sharp, J.R. Tong, and P.A. Midgley: Electron tomography of dislocations. Microsc. Microanal. 13, 150 (2007).

    Google Scholar 

  24. G.S. Liu, S.D. House, J. Kacher, M. Tanaka, K. Higashida, and I.M. Robertson: Electron tomography of dislocation structures. Mater. Charact. 87, 1 (2014).

    Article  CAS  Google Scholar 

  25. M. Briceno, J. Fenske, M. Dadfarnia, P. Sofronis, and I.M. Robertson: Effects of ion irradiation-produced defects on the mobility of dislocations in 304 stainless steel. J. Nucl. Mater. 409, 18 (2011).

    Article  CAS  Google Scholar 

  26. R.E. Smallman and K.H. Westmacott: Structure of quenched and irradiated metals. J. Appl. Phys. 30(5), 603 (1959).

    Article  CAS  Google Scholar 

  27. D.J. Mazey, R.S. Barnes, and A. Howie: On interstitial dislocation loops in aluminium bombarded with alpha-particles. Philos. Mag. 7(83), 1861 (1962).

    Article  CAS  Google Scholar 

  28. M.L. Jenkins: Characterisation of radiation-damage microstructures by TEM. J. Nucl. Mater. 216, 124 (1994).

    Article  CAS  Google Scholar 

  29. K. Hattar, D.C. Bufford, and D.L. Buller: Concurrent in situ ion irradiation transmission electron microscope. Nucl. Instrum. Methods Phys. Res., Sect. B 338, 56 (2014).

    Article  CAS  Google Scholar 

  30. M. Li, M.A. Kirk, P.M. Baldo, D. Xu, and B.D. Wirth: Study of defect evolution by TEM with in situ ion irradiation and coordinated modeling. Philos. Mag. 92(16), 2048 (2012).

    Article  CAS  Google Scholar 

  31. C. Chisholm, K. Hattar, and A.M. Minor: In situ TEM concurrent and successive Au self-ion irradiation and He implantation. Mater. Trans. 55(3), 418 (2014).

    Article  CAS  Google Scholar 

  32. S.L. Dudarev, K. Arakawa, X. Yi, Z. Yao, M.L. Jenkins, M.R. Gilbert, and P.M. Derlet: Spatial ordering of nano-dislocation loops in ion-irradiated materials. J. Nucl. Mater. 455, 16 (2014).

    Article  CAS  Google Scholar 

  33. M. Hernandez-Mayoral, Z. Yao, M.L. Jenkins, and M.A. Kirk: Heavy-ion irradiations of Fe and Fe-Cr model alloys. Part 2: Damage evolution in thin-foils at higher doses. Philos. Mag. 88(21), 2881 (2008).

    Article  CAS  Google Scholar 

  34. M.L. Jenkins, Z. Yao, M. Hernandez-Mayoral, and M.A. Kirk: Dynamic observations of heavy-ion damage in Fe and Fe-Cr alloys. J. Nucl. Mater. 389, 197 (2009).

    Article  CAS  Google Scholar 

  35. Z. Yao, M. Hernandez-Mayoral, M.L. Jenkins, and M.A. Kirk: Heavy-ion irradiations of Fe and Fe-Cr model alloys. Part 1: Damage evolution in thin-foils at lower doses. Philos. Mag. 88(21), 2851 (2008).

    Article  CAS  Google Scholar 

  36. M.L. Jenkins and M.A. Kirk: Characterization of Radiation Damage by Transmission Electron Microscopy (Institute of Physics Pub., CRC Press, Boca Raton, FL, 2001).

    Book  Google Scholar 

  37. S. Ishino: A review of in situ observation of defect production with energetic heavy ions. J. Nucl. Mater. 251, 225 (1997).

    Article  CAS  Google Scholar 

  38. C.W. Allen, L.L. Funk, and E.A. Ryan: New instrumentation in Argonne’s HVEM-Tandem Facility: Expanded capability for in situ ion beam studies. In Ion-Solid Interactions for Materials Modification and Processing, MRS Proc., 396, 1996; p. 641.

    CAS  Google Scholar 

  39. C.W. Allen: In situ ion- and electron-irradiation effects studies in transmission electron microscopes. Ultramicroscopy 56(1–3), 200 (1994).

    Article  CAS  Google Scholar 

  40. J.A. Hinks: A review of transmission electron microscopes with in situ ion irradiation. Nucl. Instrum. Methods Phys. Res., Sect. B 267, 3652 (2009).

    Article  CAS  Google Scholar 

  41. R.F. Egerton, P. Li, and M. Malac: Radiation damage in the TEM and SEM. Micron 35(6), 399 (2004).

    Article  CAS  Google Scholar 

  42. M.A. Kirk, I.M. Robertson, W.E. King, E.A. Ryan, and A. Philippides: Hvem investigation of in-situ, self-ion damage in iron at 40 and K. MRS Proc. 41, 326–347 (1985).

    Google Scholar 

  43. M.R. Gilbert, Z. Yao, M.A. Kirk, M.L. Jenkins, and S.L. Dudarev: Vacancy defects in Fe: Comparison between simulation and experiment. J. Nucl. Mater. 386–388, 36 (2009).

    Article  CAS  Google Scholar 

  44. E.A. Kenik and T.E. Mitchell: Orientation dependence of the threshold displacement energy in copper and vanadium. Philos. Mag. 32(4), 815 (1975).

    Article  CAS  Google Scholar 

  45. T. Hayashi, K. Fukmuto, and H. Matsui: In situ observation of glide motions of SIA-type loops in vanadium and V–5Ti under HVEM irradiation. J. Nucl. Mater. 307–311(Part 2), 993 (2002).

    Article  Google Scholar 

  46. A.V. Barashev, Y.N. Osetsky, and D.J. Bacon: Mechanism of one-dimensional glide of self-interstitial atom clusters in α-iron. Philos. Mag. A 80(11), 2709 (2000).

    Article  CAS  Google Scholar 

  47. K. Arakawa, K. Ono, M. Isshiki, K. Mimura, M. Uchikoshi, and H. Mori: Observation of the one-dimensional diffusion of nanometer-sized dislocation loops. Science 318, 956 (2007).

    Article  CAS  Google Scholar 

  48. B.L. Eyre and R. Bullough: On the formation of interstitial loops in metals. Philos. Mag. 12, 31 (1965).

    Article  CAS  Google Scholar 

  49. J. Chen, N. Gao, P. Jung, and T. Sauvage: A new mechanism of loop formation and transformation in bcc iron without dislocation reaction. J. Nucl. Mater. 441(1–3), 216 (2013).

    Article  CAS  Google Scholar 

  50. J. Marian, B. Wirth, and J. Perlado: Mechanism of formation and growth of <100> interstitial loops in ferritic materials. Phys. Rev. Lett. 88(25), 255507 (2002).

    Article  CAS  Google Scholar 

  51. H. Xu, R.E. Stoller, Y.N. Osetsky, and D. Terentyev: Solving the puzzle of <110>interstitial loop formation in bcc iron. Phys. Rev. Lett. 110, 265503 (2013).

    Article  CAS  Google Scholar 

  52. M.J. Aliaga, A. Prokhodtseva, R. Schaeublin, and M.J. Caturla: Molecular dynamics simulations of irradiation of α-Fe thin films with energetic Fe ions under channeling conditions. J. Nucl. Mater. 452(1–3), 453 (2014).

    Article  CAS  Google Scholar 

  53. R.E. Stoller: The effect of free surfaces on cascade damage production in iron. J. Nucl. Mater. 307–311(2 Suppl.), 935 (2002).

    Article  Google Scholar 

  54. R.E. Stoller and S.G. Guiriec: Secondary factors influencing cascade damage formation. In Proceedings of the 11th Conference on Fusion Research, December 7, 2003–December 12, 2003, Vol. 329–333; Elsevier, 2004; p. 1238.

  55. X-M. Bai, A.F. Voter, R.G. Hoagland, M. Nastasi, and B.P. Uberuaga: Efficient annealing of radiation damage near grain boundaries via interstitial emission. Science 327, 1631 (2010).

    Article  CAS  Google Scholar 

  56. B.N. Singh and A.J.E. Foreman: Calculated grain size-dependent vacancy supersaturation and its effect on void formation. Philos. Mag. 29(4), 847 (1974).

    Article  CAS  Google Scholar 

  57. D. Chen, J. Wang, T. Chen, and L. Shao: Defect annihilation at grain boundaries in alpha-Fe. Sci. Rep. 3, 1450–1454, (2013).

    Article  CAS  Google Scholar 

  58. C. Sun, K.Y. Yu, J.H. Lee, Y. Liu, H. Wang, L. Shao, S.A. Maloy, K.T. Hartwig, and X. Zhang: Enhanced radiation tolerance of ultrafine grained Fe-Cr-Ni alloy. J. Nucl. Mater. 420(1–3), 235 (2012).

    Article  CAS  Google Scholar 

  59. K.Y. Yu, Y. Liu, C. Sun, H. Wang, L. Shao, E.G. Fu, and X. Zhang: Radiation damage in helium ion irradiated nanocrystalline Fe. J. Nucl. Mater. 425(1–3), 140 (2012).

    Article  CAS  Google Scholar 

  60. O. El-Atwani, J.A. Hinks, G. Greaves, S. Gonderman, T. Qiu, M. Efe, and J.P. Allain: In-situ TEM observation of the response of ultrafine- and nanocrystalline-grained tungsten to extreme irradiation environments. Sci. Rep. 4, 4716–4722, (2014).

    Article  CAS  Google Scholar 

  61. N. Li, K. Hattar, and A. Misra: In situ probing of the evolution of irradiation-induced defects in copper. J. Nucl. Mater. 439, 185 (2013).

    Article  CAS  Google Scholar 

  62. J.W. Edington: Practical Electron Microscopy in Materials Science (N.V. Philips’ Gloeilampenfabrieken, Eindhoven, Netherlands, 1976).

    Google Scholar 

  63. B. Fultz and J. Howe: Transmission Electron Microscopy and Diffractometry of Materials (Springer, Berlin, Germany, 2008).

    Google Scholar 

  64. D. Xu, B.D. Wirth, M. Li, and M.A. Kirk: Recent work towards understanding defect evolution in thin molybdenum foils through in situ ion irradiation under TEM and coordinated cluster dynamics modeling. Curr. Opin. Solid State Mater. Sci. 16(3), 109 (2012).

    Article  CAS  Google Scholar 

  65. B.D. Wirth, V.V. Bulatov, and T.D. De La Rubia: Atomistic simulation of dislocation-defect interactions in Cu. In Microstructural Processes in Irradiated Materials-2000, November 27, 2000–November 29, 2000, Vol. 650, MRS Proc., 2001; p. R3.27.1.

    Google Scholar 

  66. M. Victoria, N. Baluc, C. Bailat, Y. Dai, M.I. Luppo, R. Schaublin, and B.N. Singh: The microstructure and associated tensile properties of irradiated FCC and BCC metals. In International Workshop on Basic Aspects of Differences in Irradiation Effects between FCC, BCC and HCP Metals and Alloys, 15–20 Oct. 1998, Vol. 276; Elsevier, 2000; p. 114.

  67. J. Silcox and P.B. Hirsch: Direct observations of defects in quenched gold. Philos. Mag. 4(37), 72 (1959).

    Article  CAS  Google Scholar 

  68. T. Dlaz de la Rubia, H.M. Zhib, T.A. Khraishi, B.D. Wirth, M. Victoria, and M.J. Caturia: Multiscale modelling of plastic flow localization in irradiated materials. Nature 406(6798), 871 (2000).

    Article  Google Scholar 

  69. T.A. Khraishi, H.M. Zbib, T.D. De La Rubia, and M. Victoria: Localized deformation and hardening in irradiated metals: Three-dimensional discrete dislocation dynamics simulations. Metall. Mater. Trans. B 33B(2), 285 (2002).

    Article  CAS  Google Scholar 

  70. K. Farrell, T.S. Byun, and N. Hashimoto: Deformation mode maps for tensile deformation of neutron-irradiated structural alloys. J. Nucl. Mater. 335, 471 (2004).

    Article  CAS  Google Scholar 

  71. S.J. Zinkle and Y. Matsukawa: Observation and analysis of defect cluster production and interactions with dislocations. In Proceedings of the 11th Conference on Fusion Research, December 7, 2003–December 12, 2003, Vol. 329–333; Elsevier, 2004; p. 88.

  72. J.S. Robach, I.M. Robertson, B.D. Wirth, and A. Arsenlis: In-situ transmission electron microscopy observations and molecular dynamics simulations of dislocation-defect interactions in ion-irradiated copper. Philos. Mag. 83(8), 955 (2003).

    Article  CAS  Google Scholar 

  73. R. Schaublin, Z. Yao, P. Spatig, and M. Victoria: Dislocation defect interaction in irradiated Cu. Mater. Sci. Eng., A. 400–401(1–2 Suppl.), 251 (2005).

    Article  CAS  Google Scholar 

  74. I.M. Robertson, J.S. Robach, H.J. Lee, and B.D. Wirth: Dynamic observations and atomistic simulations of dislocation-defect interactions in rapidly quenched copper and gold. Acta Mater. 54(6), 1679 (2006).

    Article  CAS  Google Scholar 

  75. A.S. Wadhwa and E.H.S. Dhaliwal: A Textbook of Engineering Material and Metallurgy (University Science Press, Laxmi Publications, New Delhi, India, 2008).

    Google Scholar 

  76. M. Briceño, J. Kacher, and I.M. Robertson: Dynamics of dislocation interactions with stacking-fault tetrahedra at high temperature. J. Nucl. Mater. 433(1–3), 390 (2013).

    Article  CAS  Google Scholar 

  77. Y.N. Osetsky, Y. Matsukawa, R.E. Stoller, and S.J. Zinkle: On the features of dislocation-obstacle interaction in thin films: Large-scale atomistic simulation. Philos. Mag. Lett. 86(8), 511 (2006).

    Article  CAS  Google Scholar 

  78. Y.N. Osetsky, R.E. Stoller, and Y. Matsukawa: Dislocation-stacking fault tetrahedron interaction: What can we learn from atomic-scale modelling. In Proceedings of the 11th Conference on Fusion Research, December 7, 2003–December 12, 2003, Vol. 329–333, Elsevier; 2004; p. 1228.

  79. Y.N. Osetsky, R.E. Stoller, D. Rodney, and D.J. Bacon: Atomic-scale details of dislocation-stacking fault tetrahedra interaction. Mater. Sci. Eng., A. 400–401(1–2 Suppl.), 370 (2005).

    Article  CAS  Google Scholar 

  80. B.D. Wirth, V.V. Bulatov, and T. De La Diaz Rubia: Dislocation-stacking fault tetrahedron interactions in Cu. J. Eng. Mater. Technol. 124(3), 329 (2002).

    Article  CAS  Google Scholar 

  81. N.M. Ghoniem, S.H. Tong, J. Huang, B.N. Singh, and M. Wen: Mechanisms of dislocation-defect interactions in irradiated metals investigated by computer simulations. J. Nucl. Mater. 307–311(2 Suppl.), 843 (2002).

    Article  Google Scholar 

  82. N.M. Ghoniem, S.H. Tong, B.N. Singh, and L.Z. Sun: On dislocation interaction with radiation-induced defect clusters and plastic flow localization in FCC metals. Philos. Mag. A 81(11), 2743 (2001).

    Article  CAS  Google Scholar 

  83. M.D. McMurtrey, B. Cui, I.M. Robertson, D. Farkas, and G.S. Was: The role of dislocation channels in irradiation assisted stress corrosion cracking. Curr. Opin. Solid State Mater. Sci.(2014, submitted).

  84. M.D. McMurtrey, G.S. Was, L. Patrick, and D. Farkas: Relationship between localized strain and irradiation assisted stress corrosion cracking in an austenitic alloy. Mater. Sci. Eng., A. 528(10–11), 3730 (2011).

    Article  CAS  Google Scholar 

  85. T.C. Lee, I.M. Robertson, and H.K. Birnbaum: TEM in situ deformation study of the interaction of lattice dislocations with grain boundaries in metals. Philos. Mag. A 62(1), 131 (1990).

    Article  CAS  Google Scholar 

  86. T.R. Bieler, P. Eisenlohr, F. Roters, D. Kumar, D.E. Mason, M.A. Crimp, and D. Raabe: The role of heterogeneous deformation on damage nucleation at grain boundaries in single phase metals. Int. J. Plast. 25, 1655 (2009).

    Article  CAS  Google Scholar 

  87. T.C. Lee, I.M. Robertson, and H.K. Birnbaum: In situ transmission electron microscope deformation study of the slip transfer mechanisms in metals. Metall. Trans. A 21A(9), 2437 (1990).

    Article  CAS  Google Scholar 

  88. L. Patriarca, W. Abuzaid, H. Sehitoglu, and H.J. Maier: Slip transmission in bcc FeCr polycrystal. Mater. Sci. Eng., A. 588, 308 (2013).

    Article  CAS  Google Scholar 

  89. M.D. Sangid, T. Ezaz, H. Sehitoglu, and I.M. Robertson: Energy of slip transmission and nucleation at grain boundaries. Acta Mater. 59(1), 283 (2011).

    Article  CAS  Google Scholar 

  90. B. Cui, J. Kacher, M. McMurtrey, G. Was, and I.M. Robertson: Influence of irradiation damage on slip transfer across grain boundaries. Acta Mater. 65, 150 (2014).

    Article  CAS  Google Scholar 

  91. B. Cui, M.D. McMurtrey, G.S. Was, and I.M. Robertson: Micromechanistic origin of irradiation-assisted stress corrosion cracking. Philos. Mag. 94(36), 4197 (2014).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported financially by the US Department of Energy under Award No. DE-FG02-08ER46525 (BC and IMR) and the US Department of Energy Office of Basic Energy Sciences under Award No. DEFG-02-07ER46443 (JK and IMR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josh Kacher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kacher, J., Cui, B. & Robertson, I.M. In situ and tomographic characterization of damage and dislocation processes in irradiated metallic alloys by transmission electron microscopy. Journal of Materials Research 30, 1202–1213 (2015). https://doi.org/10.1557/jmr.2015.14

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.14

Navigation