MicroTESK: An Extendable Framework for
Test Program Generation

Alexander Kamkin*, Tatiana Sergeeva®, Andrei Tatarnikov*’ and Artemiy Utekhin?
* Institute for System Programming of the Russian Academy of Sciences (ISPRAS)
t National Research University Higher School of Economics (NRU HSE)
t Moscow State University (MSU)
Email: {kamkin,leonsia,andrewt,utekhin} @ispras.ru

Abstract— Creation of test programs and analysis of their
execution is the main approach to system-level verification of
microprocessors. A lot of techniques have been proposed to
automate test program generation, ranging from completely
random to well directed ones. However, no ‘silver bullet” has
been found. In good industrial practices, various methods are
combined complementing each other. Unfortunately, there is
no solution that could integrate all (or at least most) of the
techniques in a single framework. Engineers are forced to use
a number of tools, which leads to the following problems:
(1) it is required to maintain duplicating data (each tool uses
its own representation of the target design); (2) to be used
together, tools need to be integrated (engineers have to deal with
different formats and interfaces). This paper proposes a concept
of an extendable framework (MicroTESK) that follows a unified
methodology for defining test program generation techniques.
The framework supports random and combinatorial generation
and (what is even more important) can be easily extended with
new techniques being implemented as the framework’s plugins.

I. INTRODUCTION

Being extremely complex, modern microprocessors require
systematic activities for ensuring their correctness and reli-
ability. Such activities are usually referred to as verification
and testing [1]. The first of them, verification, is applied in the
development stage and focuses on discovering logical faults
in microprocessor designs (functional faults, interface faults,
etc.). The second one, testing, is related to the manufacturing
stage and deals with diagnosing physical faults in integrated
circuits (stuck-at faults, bridging faults, etc.). The general
approach to both tasks is based on execution of verification/test
programs, which are assembly programs causing some situa-
tions in the design (internal events, component interactions,
etc.) [2]. (Throughout the paper we will use the term festing
to denote both verification and testing.)

By the present time, a great number of techniques for
automated test program generation have been proposed. All
of them can be subdivided in the following categories:
(1) random generation [3], (2) combinatorial generation [2],
(3) template-based generation [4] and (3) model-based gener-
ation [5]. The thing is that there is no a “silver bullet”, which
can effectively “fight” against all kinds of testing tasks. In real-
life practice, different approaches are used together comple-

This work was supported in part by the Ministry of Education and Science
of the Russian Federation under grant #8232 (06/08/2012).

menting and strengthening each other. It is a typical solution,
for example, when general functionality of a microprocessor
is tested by randomly generated programs, while critical logic
is verified by advanced model-based techniques.

Unfortunately, there is no framework that could accomodate
a variety of test program generation techniques. Engineers
have to use a number of tools with different input/output
formats, and it is a big problem how to integrate them and
keep their configurations in consistent states. It is not difficult
to use different tools for solving loosely connected tasks,
but settling tightly dependent problems by means of two or
more tools might require deep knowledge of their internal
interfaces. The root of the problem is that different tools use
different representation of the target design, and often one
representation is hidden from others. As a result, similar things
are specified several times, duplicating data and complicating
tests maintenance.

We propose a concept of an extendable test program
generation framework, named MicroTESK [6]. The idea is
to represent knowledge about the microprocessor under test
(a design/coverage model) in a general way and to provide
easy access to that knowledge to a number of test generators
built as the framework’s plugins. Being shared among various
tools, a common model serves as a natural interface for
their integration. Moreover, we have unified test generator
interfaces, making it possible to use different tools for solving
a testing task and even to combine them for doing complex
jobs. Interaction between the framework and engineers is done
with the help of fest templates that specify test scenarios
in a hierarchical manner (dividing testing tasks into smaller
subtasks and linking each of them with an appropriate test
generator).

The rest of the paper is organized as follows. Section 2
overviews existing test generation techniques and tools. Sec-
tion 3 analyses the approaches described in Section 2 and
formulates a concept of an extendable test program generation
framework. Section 4 outlines the framework architecture
and introduces two main components: a modeling framework
and a festing framework. Section 5 considers the modeling
framework and its components: a translator and a modeling
library. Section 6 pays attention to the testing framework
consisting of a test template processor, a testing library and a
constraint solver engine. Section 7 concludes the paper.

II. TEST PROGRAM GENERATION TECHNIQUES

There is a variety of techniques for test program construc-
tion. All of them can be divided into two types: (1) manual
test program development and (2) automated test program
generation. Nowadays, manually created tests are rarely used
for systematic verification of microprocessors, but the ap-
proach is still in use for testing hardly formalizable and
highly unlikely “corner cases” in microprocessor behavior. As
for automated techniques, they can be subdivided into the
following classes: (1) random generation, (2) combinatorial
generation, (3) template-based generation and (4) model-
based generation.

Random generation is the most common technique to
produce complex (though unsystematic) test programs for
microprocessor verification. Being easy to implement, the
method, however, can create a significant workload to the
microprocessor and is able to detect some high-quality bugs.
One of the most famous generators of that type is RAVEN
(Random Architecture Verification Engine) developed by Ob-
sidian Software Inc (now acquired by ARM) [3]. To generate
test programs, the tool not only applies randomization, but
takes into account information about common microprocessor
faults. RAVEN is built upon pre-developed and custom made
modules that can be included into the generator to expand its
functionality [3]. Unforfunately, due to the lack of publicly
available information, technical details are unclear.

Another approach to test program construction is combi-
natorial generation. A brief analysis of microprocessor errata
shows that many bugs can be detected by small test cases
(2-5 instructions). Thus, it may be useful to systematically
enumerate short sequences of instructions (including fest situ-
ations for individual instructions and dependencies between
instructions) [2]. The technique has been implemented in
the first version of MicroTESK (ISPRAS). The tool supports
hierarchical decomposition of a test program generator into
iterators (each being responsible for iterating its own part
of the test) and combinators (combining results of the inner
iterators into complex test sequences). MicroTESK can also
construct test programs with branch instructions (generation
is done by enumeration of control flow graphs and bounded
depth-first exploration of the execution traces) [7].

The next method is called template-based generation. A
test template is an abstract representation of a test program,
where constraints are used to specify possible values of
instruction operands (instead of concrete values used in usual
programs). When constructing a test program, a generator
tries to find random solutions to the given constraint systems
(such approach is usually referred to as constraint-based
random generation [8]). Automating routine work, the method
considerably increases productivity of engineers. The leading
generator of that kind is Genesys-Pro (IBM Research) [4]. This
is an architecture-independent tool that uses two types of input
data: (1) a model (containing architecture-specific information)
and (2) test templates (describing test scenarios). Genesys-Pro
generates test programs in an instruction-wise manner: at each

step, it selects an instruction to be put into a program and,
then, formulates and solves a constraint system for the chosen
instruction.

As opposed to the previously described approaches, model-
based generation uses microprocessor models to compose test
programs (or test templates). It is worthwhile clarifying the
terminology. There are two main types of models used in
microprocessor design and test: (1) instruction-level models
(behavioral models) and (2) microarchitectual models (struc-
tural models). Models of the first type specify micropro-
cessors as instruction sets (in other words, they describe a
programmer’s view to microprocessors: ‘How to write pro-
grams for a microprocessor?’). Models of the second type
define the internal structure of microprocessors (this is a
computer engineer’s point of view: ‘How a microprocessor is
organized inside?’). All test program generation methods and
tools apparently use instruction-level models, but only few of
them use microarchitectural models. The latter ones are called
model-based. Let us consider some examples.

In [5], a method for directed test program generation has
been proposed. It takes detailed microprocessor specifications
written in the EXPRESSION language [9] and translates them
into the SMV (Symbolic Model Verifier) description [10].
Specifications define the structure of the design (components
and their interconnections), its behavior (semantics of the
instructions) and mapping between the structure and the be-
havior. The key part of the work is a fault model describing
typical errors for registers, individual operations, pipeline
paths and for interactions between several operations. For each
of the fault types, the set of concrete properties is generated,
each of which is covered by a test case constructed by SMV
(as a counterexample for the negation of the property). The
generated test cases are mapped into test programs. As the
authors say, the technique does not scale well on complex
microprocessor designs. Thus, they suggest using the template-
based approach as an addition. Test templates are developed
by hand and describe sequences of instructions that create
certain situations in the design’s behavior (first of all, pipeline
hazards). Test program generation is performed with the help
of the graph model extracted from the specifications. It should
be noticed that both approaches are based on rather accurate
specifications, and it is better to apply them in the late design
stages when the microarchitecture is stable.

In [11], a microprocessor is formally specified as an oper-
ation state machine (OSM). The OSM is a system of com-
municating extended finite state machines (EFSMs) modeling
the microprocessor at two levels: (1) the operational level
and (2) the hardware level. At the first level, movement of
the instructions across the pipeline stages is described (each
operation is specified by an EFSM). At the second level, hard-
ware resources are modeled using so-called foken managers.
An operation EFSM changes its state by capturing/releasing
tokens of the token managers. The pipeline model is defined as
a concurrent composition of the operation EFSMs and resource
EFSMs. Test programs are generated on-the-fly by traversing
all reachable states and transitions of the joint OSM model.

III. EXTENDABLE FRAMEWORK CONCEPT

Let us analyze the test generation techniques and tools
having been surveyed previously and formulate a concept
of an extendable test program generation framework. It is
worthwhile answering the questions: ‘What is extendability?”
and ‘What is an extendable framework?’ In general terms, ex-
tendability is a framework characteristic that shows how much
effort it takes to integrate a new or existing component (in
our case, a microprocessor model or a test generation engine)
into the framework. Indeed, the less effort it is required, the
more extendable the framework is. The object of this study is
to suggest a framework architecture that would minimize the
effort for creating new models/engines and plugging them into
the framework.

There is a number of basic requirements that all kinds
of extendable frameworks are expected to comply with. A
system should be architected in such a way that there is a
core (platform) and there are extensions (plugins) connected
to the core via the extension points. Obviously, there should
be well-defined interfaces between the core and its extensions
as well as clear mechanisms for installing extensions into
the framework and calling them for solving particular tasks.
An optional requirement, which, we think, is essential for
true extendable frameworks, is open source. The open source
paradigm significantly simplifies creation and distribution of
framework extensions.

There are also specific requirements to test program gener-
ation frameworks. Analyzing the approaches presented in the
previous section, we can see that all of them use instruction-
level models (either explicitly or implicitly). Evidently, to cre-
ate a valid test program, one should know instruction formats
and instruction preconditions. However, if more sophisticated
programs need to be generated, more complicated models
should be utilized (finite state machines, nets, etc.). In our
opinion, the core should be formed around instruction-level
models, while more specialized models/engines should be
organized as framework extensions. Another suggestion is to
divide the test program generation framework into two parts:
(1) the modeling framework and (2) the testing framework,
each having its own core and being extendable.

The core of the modeling framework allows describing
registers (as variables storing fixed-size bit vectors), memory
(as an array of machine words) and instructions (as atomic
operations over registers and memory). More detailed speci-
fication is provided by so-called model extensions. There is
a number of points that such extensions can be connected
to (e.g., the memory access handler and the instruction exe-
cution handler). The framework supports standard extensions
for specifying memory management (cache hierarchy, address
translation mechanisms, etc.) and pipelining (interconnection
between pipeline stages, control flow transfers, etc.). Note that
the standard extensions, in turn, have extension points and can
be easily customized by engineers (e.g., it is possible to define
a cache replacement strategy or describe behavior of a pipeline
stage).

The testing framework is comprised of engines of two types:
(1) test sequence generators and (2) test data generators.

The main test sequence generators are random and combi-
natorial generators [2], [3]. It is explained by the fact that
the modeling framework is organized around instruction-level
models, which give no information on how to compose instruc-
tions into sequences for achieving particular testing goals. A
useful feature is support for test program composition [12].
Given two test programs (or test templates) focusing on
different (and more or less independent) situations, it may be
interesting to shuffle them with the intention to cause situations
to occur simultaneously or close to each other. More advanced
model-based generators can be installed into the framework
together with the corresponding models. Moreover, extension
of the modeling framework shoud be always accompanied
by the extension of the testing framework (if a new type of
models is added into the framework, one should describe how
to generate tests on the base of such models).

We think, it is a promising practice to use constraint solvers
for test data generation (as it is done in Genesys-Pro [4]).
It implies that test situations are expressed as constraints
on the instruction operands and the microprocessor state. An
important property of the approach is that situations can be
easily combined by conjuncting the constraints. In contrast to
Genesys-Pro, we suggest using general-purpose SMT solvers
(like Yices [13] and Z3 [14]) supporting the unified SMT-
LIB notation [15]. In addition, the generation core can be
extended with custom generators (which are useful when
situations are hardly expressible in terms of constraints). There
is also a library of predefined generators including random
generators and directed generators (e.g., for the floating-point
arithmetic [16]).

IV. MICROTESK FRAMEWORK ARCHITECTURE

The MicroTESK framework is divided into two main parts:
(1) the modeling framework and (2) the testing framework. The
purpose of the modeling framework is to represent a model
of the microprocessor under test (a design model) as well
as model-based testing knowledge (a coverage model). The
design/coverage model is extracted from formal specifications
written in an architecture description language (ADL). The
testing framework, for its turn, is responsible for generating
test programs for the target microprocessor on the base of
information provided by the model. Testing goals are defined
in test templates written in a template description language
(TDL).

The MicroTESK modeling framework consists of (1) a
translator (analyzing formal specifications in an ADL and
producing the microprocessor model) and (2) a modeling
library (containing interfaces to be implemented by a model
and classes to be used as building blocks) (see Figure 1).
The translator includes two back-ends: (1) a model generator
(constructing an executable design model) and (2) a coverage
extractor (building a coverage model for the microprocessor
instructions). In a similar fashion, the modeling library is split
into design and coverage libraries.

Modeling Framework
Translator
| Model Generator |

Modeling Library
| Design Library |

Formal
Specifications

| Coverage Extractor | | Coverage Library |

(Model
| Design Model || Coverage Model |
A

Testing Framework

Test Template | | Testing Library
Test Templates Processor | Test Sequence Generators |
Constraint

| Test Data Generators |

—

Solver Engine

| External Solvers }_/I\ \9‘ Test Programs |

Figure 1. General structure of the MicroTESK framework
e - (o a
Framework Plugin Design Aspect
F————————— Wl-—-----——=-—=—==—-
I Modeling /| | Core |
: | Translator || : | Instruction Set | |
, | e ;
. r—— === ==
:| Library |I | Extensions :
___________ I
—————————— Tl | Memory Management | I
: Testing | I
| inelini |
1| Test Generators | : | | Pipelining | |
| | - |
1 Solvers : | User Defined | |
=) === ———— 4
Figure 2. Design aspects and organization of a MicroTESK plugin

Components of the MicroTESK testing framework are as
follows: (1) a test template processor (handling test templates
written in a TDL and generating test programs), (2) a festing
library (containing a wide range of test sequence generators
and test data generators used by the test template processor)
and (3) a constraint solver engine (providing the test gener-
ators of the testing library with a Java interface to external
SMT solvers).

The framework components are not monolithic — they
include some core functionality as well as extensions oriented
to specific tasks. Such tasks are usually grouped according
to the design aspects they deal with. All extensions related
to the same aspect are united into a framework plugin (see
Figure 2). To extend the framework with features aimed at
modeling/testing a new design aspect, one should develop
extensions for all of the framework components, including
a modeling library (to provide building blocks for modeling
the design aspect), a festing library (to let the framework
know of how to test the design aspect) and a specification
language coupled with a translator (to make it possible to
express properties on the design aspect in a human-readable
form).

The framework functionality is divided into the following
aspects: (1) instruction set, (2) memory management and
(3) pipelining. Forming the framework core, the first aspect
is responsible for modeling microprocessor instructions and
generating test programs on the base of the instruction-level
models (random, combinatorial and template-based generators
are in active use). Support for the next ones, memory manage-
ment and pipelining, is implemented in the standard plugins.
For other design aspects, custom plugins can be created and
installed into the framework.

V. MICROTESK MODELING FRAMEWORK

The purpose of the MicroTESK modeling framework is to
represent knowledge about a microprocessor and share that
knowledge with the testing framework. An engineer provides
formal specifications of the microprocessor under test. The
specifications are processed by the translator (including the
front-end and two back-ends, the model generator and the
coverage extractor). The translator produces the model by
using the modeling library (comprising the design and cov-
erage libraries). Let us consider the modeling framework
components in more detail.

A. Translator

The translator processes formal specifications of the mi-
croprocessor and builds the design/coverage model (apply-
ing the model generator/coverage extractor and using the
building blocks defined in the design/coverage library). Note
that microprocessor specifications are written in a mixture
of languages, each being responsible its own design aspect.
The central part of specifications is related to the instruction
set architecture; other parts describe memory management,
pipelining, etc. As specifications are heterogeneous, the trans-
lator is actually represented as a set of tools processing their
parts of specifications.

At the moment, Sim-nML [17], [18] is the only ADL
supported by MicroTESK for specifying microprocessors at
the instruction level. Sim-nML code specifying the integer ad-
dition instruction (ADD) from the MIPS instruction set [19] is
shown below. Several things need to be emphasized: (1) spec-
ifications can use the predefined function UNPREDICTABLE
to indicate the situations, where the design’s behavior is
undefined; (2) by analyzing control and data flows in instruc-
tion specifications one can automatically extract the coverage
model; (3) instructions can be grouped together providing the
framework with useful information to be used within test
templates; (4) basing on such specifications, the framework
is able to predict the result of the test program execution [12].

op ADD(rd: GPR, rs: GPR, rt: GPR)
action = {
if (NotWordValue(rs) || NotWordValue(rt))
then
UNPREDICTABLE () ;
endif ;
tmp = rs <31..31>::rs <31..0> +

rt <31..31>::rt <31..0>;

if (tmp<32..32> !=
then

SignalException (" IntegerOverflow ”);
else

tmp <31..31>)

rd = sign_extend (tmp_word <31..0>);
endif ;
}
syntax = format(”add %s, %s, %s”,
rd.syntax , rs.syntax, rt.syntax)

op ALU = ADD | SUB |

B. Design Library

The design library is intended to represent a microprocessor
model, which is used to simulate instruction execution and to
keep track of the design state during test program generation.
State tracking is essential for generating self-checking tests
(i.e., programs with built-in checks of the microprocessor
state). In addition to the instruction simulator (which simulates
instructions and updates the model state) and the state observer
(which provides access to the model state), the design model
provides meta-information describing the design elements
(registers, memory, instructions, etc.). The meta-information
is the main interface between the modeling framework and
the test template processor.

The design library has several extension points that allow
engineers to connect their components. The set of extension
points includes (1) the memory access handler and (2) the
instruction execution handler. The handler of the first type is
invoked every time a memory location is accessed for reading
or writing. It may encapsulate memory management logic such
as address translation and caching. The handler of the second
type is launched when an instruction is executed. It is usually
used to model the microprocessor pipeline — decomposition of
instructions into microoperations and their scheduling.

C. Coverage Library

The coverage library is used to describe situations that can
occur in a microprocessor (an overflow, a cache miss/hit, a
pipeline bypass, etc.). Such a description (referred to as a
coverage model) serves as a basis for generating test programs
(especially, for creating test data for individual instructions of a
program). Besides the test situations, the coverage model con-
tains grouping rules, classifying microprocessor instructions
according to some criteria (number of operands, resources
being accessed, control flow structure, etc.). Similar to the
design model, the coverage model provides meta-information
on its elements, which is used by the test template processor.

Each test situation has a unique name that can be used in a
test template to refer to the situation. There is a mapping of
situation names onto test generators. Thus, the test template
processor knows which engine to use to create a particular
test case. To make the engine comprehend how it can be
done, the situation include an engine-specific description of
the condition/action causing the situation to occur. The most

usable engine built-in into the framework uses the constraint-
based description of situations and constraint solving [20].

VI. MICROTESK TESTING FRAMEWORK

The MicroTESK testing framework is responsible for gen-
erating test programs. An engineer provides a fest template
describing a test scenario for the microprocessor under test.
The test template is handled by the test template processor
by using the engines of the testing library: (1) it applies the
test sequence generators to construct a symbolic test program
(i.e., sequence of instructions annotated with test situations);
(2) it requests the test data generators to generate concrete
values of the instruction operands; (3) it instantiates the test
program by inserting control code initializing the registers and
the memory with the generated test data. Let us consider the
testing framework components in more detail.

A. Test Template Processor

The test template processor is a runtime environment that
handles a test template, chooses appropriate engines of the
testing library and produces a test program. The supported
TDL is organized as a Ruby [21] library. It allows describing
instruction sequences in a way it is done in the assembly
language (by using the meta-information provided by the de-
sign model) though supporting high-level scenario description
constructs. The latter ones can be subdivided into two types:
(1) native Ruby constructs (conditional statements, loops, etc.)
and (2) special MicroTESK constructs (test sequence blocks,
test situations, etc.). A simple test template example is given
below.

Assembly—Style Code

add r[1], r[2], r[3]
sub r[1], r[1], r[4]
Ruby Control Statements

(1..3).each do |i]
add r[i], r[i+1],
sub r[i], r[i],
end

r[i+2]
r[i+3]

Test Sequence Block
block (: engine => “random”,

:count => 2013)
{
add r[1], r[2], r[3]
sub r[1], r[2], r[3]
Test Situation Reference

do overflow end

}

An important notion used in test templates is a test sequence
block. In fact, a test template is a hierarchical structure
of test sequence blocks, each holding a set of instructions
(or nested blocks) and specifying a fest sequence generator
(and its parameters) to be used to produce a test sequence.
The test template processor constructs test sequences for the

nested blocks by applying the corresponding engines and then
combines/composes the built sequences with the root engine
(an example is given the section “Test Sequence Generators™).

Another important feature of the test template processor
is support for generation of self-checking tests. When con-
structing a test program, the test template processor can inject
special pieces of code that check whether the microprocessor
state is valid in the corresponding execution point. Such code
(called a fest oracle) compares data stored in the previously
accessed registers and memory blocks with the reference data
(calculated by the instruction simulator) and terminates the
program if they do not match.

B. Test Sequence Generators

A test sequence generator is organized as an iterator of test
sequences. In the simplest case, a test sequence generator re-
turns a single test sequence for a single test sequence block. As
blocks can be nested, generators can be combined/composed in
a recursive manner. To do it, two strategies should be defined
for each non-terminal block: (1) a combinator (describing
how to combine the results of the inner iterators) and (2) a
compositor (defining the method for merging several pieces of
code together). Thus, a combinator produces the combinations
of the inner test sequences, while a compositor merges those
sequences into the one.

The testing library contains a variety of combinators and
compositors. The most usable combinators are: (1) a random
combinator (produces a number of random combinations
of the innmer iterators’s results), (2) a product combinator
(creates all possible combinations of the inner blocks’ test
sequences) and (3) a diagonal combinator (synchronously
requests the inner iterators and joins their results). The set of
implemented compositors include: (1) a random compositor
(randomly mixes the inner test sequences), (2) a catenation
compositor (catenates the inner test sequences) and (2) a
nesting compositor (embeds the inner test sequences one into
another). Note that engineers are allowed to add their own
test sequence generators, combinators and compositors into
the testing library and invoke them from test templates. Let
us consider a simple example.

Test Sequence Block
block (: combine => "product”,
:compose => “random”) {

Nested Block A
block (: engine => “random”,

:length => 3,
scount => 2) {
add r[a], r[b], r[c]
sub r[d], r[e], r[f]
mult r[g], r[h]
div r[i], r[j]

Nested Block B

block (: engine => “permutate”) {
Id r[k], r[1]
st r[m], r[n]

}

In the example above, there is one top-level block contain-
ing two nested blocks, A and B. Block A consists of four
instructions, ADD, SUB, MULT and DIV. Block B consists
of LD and ST. The engine associated with A generates two
sequences (:count => 2) of the length three (:length
=> 3) composed of the instructions listed in the block. The
engine associated with B generates all permutations of the in-
ner instructions (there are two permutations of two elements).
The top-level engine produces all possible combinations of the
nested blocks’ sequences (: combine => "product")and
randomly mixes them (:compose => "random"). The
result may look as follows.

Combination (1,1)

sub r[d], r[e], r[f] # Block A
1d r[k], r[1] # Block B
div r[i], r[j] # Block A
st r[m], r[n] # Block B
add r[a], r[b], r[c] # Block A
Combination (1,2)

st r[m], r[n] # Block B
sub r[d], r[e], r[f] # Block A
1d r[k], r[l] # Block B
div r[i], r[j] # Block A
add r[a], r[b], r[c] # Block A
Combination (2,1)

mult r[g], r[h] # Block A
mult r[g], r[h] # Block A
1d r[k], r[1] # Block B
add r[a], r[b], r[c] # Block A
st r[m], r[n] # Block B
Combination (2,2)

mult r[g], r[h] # Block A
st r[m], r[n] # Block B
mult r[g], r[h] # Block A
1d r[k], r[l] # Block B
add r[a], r[b], r[c] # Block A

C. Test Data Generators

A symbolic test program produced by fest sequence gen-
erators does not necessarily define values of all of the in-
struction operands (leaving some of them either undefined
or deliberately ambiguous). The job of test data generators
is to construct operand values on the base of the provided
test situations. Test data generation relies on the constraint
solver engine that constructs operand values by solving the
corresponding constraints. To achieve a given test situation,

the rest template processor selects an appropriate test data
generator and requests the design model for the state of the
involved design elements. After that, it initializes the closed
variables of the constraint (variables whose values are defined
by the previouly executed instructions) and calls the constraint
solver engine to construct the free variables’ values.

As soon as the operand values are constructed, the test
data generator returns control code, which is a sequence
of instructions that accesses the microprocessor resources
associated with the instruction operands and brings them into
the required states. For example, if an instruction operand is
a register, control code writes the constructed value into that
register. Following the concept of the constraint-based random
generation, different calls of a test data generator may lead to
different values of free variables. However, each generated set
of values should cause the specified test situation.

D. Constraint Solver Engine

The constraint solver engine is a framework component
that helps fest data generators to construct test data by
solving constraints specified in test situations. The engine is
implemented as a collection of solvers encapsulated behind a
generic interface. Solvers are divided into two major families:
(1) universal solvers (handling a wide range of constraint
types) and (2) custom solvers (aimed at specific test data
generation tasks).

Universal solvers are built around external SMT solvers (like
Yices [13] and Z3 [14])), which provide a rich constraint
description language (supporting Boolean algebra, arithmetic,
logic over fixed-size bit vectors and other theories) as well as
effective decision procedures for solving such constraints. The
MicroTESK framework uses Java Constraint Solver API [20]
providing a generic interface to SMT-LIB-based constraint
solvers [15]. The library allows dynamically creating con-
straints in Java, mapping them to the SMT-LIB descriptions,
launching a solver and transferring results back to Java.

Some test situations are hardly expressible in terms of
SMT constraints (e.g., situations in floating-point arithmetic,
memory management, etc.). For such situations engineers
are able to provide special custom solvers/generators. Note
that custom solvers can also use SMT solvers to construct
test data; though they usually implement non-trivial logic on
forming a constraint system and interpreting its solution. When
the design/coverage model is extended with a new type of
knowledge, it often means a need to provide a corresponding
custom solver. To facilitate extension of the constraint solver
engine with new solvers, both universal and custom solvers
implement uniform interfaces.

VII. CONCLUSION

We have suggested the extendable achitecture for test pro-
gram generation framework. The proposed solution, named
MicroTESK, can combine a wide range of microprocessor
modeling and testing techniques. The central part of the
framework is built around instruction-level models and ran-
dom/combinatorial test program generators. More complicated

types of models and test generation engines are supposed to
be added as the framework’s extensions. The goal of our work
is not to create a “silver bullet” for microprocessor verification
and testing (which, we believe, does not exist), but to organize
a flexible, open-source environment being able to absorb
a variety of useful approaches. Let us emphasize that the
development having been launched at ISPRAS is based on the
many-years experience of verifying industrial microprocessors.
The work has not been finished, and there are a lot of things
need to be done. In the nearest future, we are planning to
implement the framework core and customize the generator for
widely-spread microprocessor architectures, including ARM
and MIPS. We are also working on MicroTESK’s extensions
for specifying/testing memory management mechanisms and
pipeline control logic.

REFERENCES

[1] M.S. Abadir, S. Dasgupta, Guest Editors’ Introduction: Microprocessor
Test and Verification. IEEE Design & Test of Computers, Volume 17,
Issue 4, 2000, pp. 4-5.

[2] A. Kamkin. Test Program Generation for Microprocessors. Institute for
System Programming of RAS, Volume 14, Part 2, 2008, pp. 23-63 (in
Russian).

[3] http://www.arm.com/community/partners/display -product/rw/Productld/5171/.

[4] A. Adir, E. Almog, L. Fournier, E. Marcus, M. Rimon, M. Vinov
and A. Ziv. Genesys-Pro: Innovations in Test Program Generation for
Functional Processor Verification. IEEE Design & Test of Computers,
Volume 21, Issue 2, 2004, pp. 84-93.

[5] P. Mishra and N. Dutt. Specification-Driven Directed Test Generation
for Validation of Pipelined Processors. ACM Transactions on Design
Automation of Electronic Systems (TODAES), Volume 13, Issue 3,
2008, pp. 1-36.

[6] http://forge.ispras.ru/projects/microtesk.

[71 A. Kamkin. Some Issues of Automation of Test Program Generation for
Branch Units of Microprocessors. Institute for System Programming of
RAS, Volume 18, 2010, pp. 129-150 (in Russian).

[8] Y. Naveh, M. Rimon, I. Jaeger, Y. Katz, M. Vinov, E. Marcus and
G. Shurek. Constraint-Based Random Stimuli Generation for Hardware
Verification. Al Magazine, Volume 28, Number 3, 2007, pp. 13-30.

[9] P. Grun, A. Halambi, A. Khare, V. Ganesh, N. Dutt and A. Nicolau.

EXPRESSION: An ADL for System Level Design Exploration. Technical

Report 1998-29, University of California, Irvine, 1998.

http://www.cs.cmu.edu/~ modelcheck/smv.html.

T.N. Dang, A. Roychoudhury, T. Mitra and P. Mishra. Generating Test

Programs to Cover Pipeline Interactions. Design Automation Confer-

ence (DAC), 2009, pp. 142-147.

A. Kamkin, E. Kornykhin and D. Vorobyev. s Reconfigurable Model-

Based Test Program Generator for Microprocessors. Software Testing,

Verification and Validation Workshops (ICSTW), 2011, pp. 47-54.

B. Dutertre and L. Moura. The YICES SMT Solver. 2006

(http://yices.csl.sri.com/tool-paper.pdf).

L. Moura and N. Bjgrner. Z3: An Efficient SMT Solver. Conference on

Tools and Algorithms for the Construction and Analysis of Systems

(TACAS), 2008, pp. 337-340.

D.R. Cok. The SMT-LIBv2 Language and Tools: A Tutorial. GrammaT-

ech, Inc., Version 1.1, 2011.

M. Aharoni, S. Asaf, L. Fournier, A. Koifman and R. Nagel. FPgen — A

Test Generation Framework for Datapath Floating-Point Verification.

High Level Design Validation and Test Workshop (HLDVT), 2003.

pp. 17-22.

M. Freericks, The nML Machine Description Formalism. Techical Re-

port, TU Berlin, FB20, Bericht 1991/15.

R. Moona, Processor Models For Retargetable Tools. International

Workshop on Rapid Systems Prototyping (RSP), 2000, pp. 34-39.

MIPS64TM Architecture For Programmers. Volume II: The

MIPS64TM TInstruction Set, Document Number: MD00087, Revision

2.00, June 9, 2003.

http://forge.ispras.ru/projects/solver-api.

http://www.ruby-lang.org.

[10]
(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]
(21]

