Experimental Animals
Online ISSN : 1881-7122
Print ISSN : 1341-1357
ISSN-L : 0007-5124
Original
Overexpression of miR-224-5p alleviates allergic rhinitis in mice via the TLR4/MyD88/NF-κB pathway
Jianhua WuLizhen WuLi ZhangHuanhuan XuMin WangLin WangJie ChenKaiyue Sun
Author information
JOURNAL OPEN ACCESS
Supplementary material

2021 Volume 70 Issue 4 Pages 440-449

Details
Abstract

Inflammatory allergic reaction is the main cause of allergic rhinitis (AR). Previous studies indicated that miR-224-5p was downregulated in the nasal mucosa of patients with AR, while the function of miR-224-5p in AR remains unclear. To explore this issue, AR mouse model was established using ovalbumin (OVA). For treatment group, lentivirus (LV)-miR-224-5p or its control was intranasally administrated to AR mice. miR-224-5p expression was detected by reverse transcription-quantitative PCR, followed by assessing the immunoglobulin E (IgE) level. Pathological alterations in nasal mucosa were detected using Hematoxylin-Eosin staining and Sirius red staining, followed by assessing the levels of inflammatory cells and factors. The NLRP3 inflammasome and TLR4/MyD88/NF-κB pathway were measured by Western blot, and then the relationship between miR-224-5p and toll-like receptor 4 (TLR4) was verified. The results showed that miR-224-5p was significantly decreased in nasal mucosa of AR mice. AR mice exhibited increased sneezing and nasal rubbing events, IgE level in serum, and pathological alterations in nasal mucosa, while overexpression of miR-224-5p markedly attenuated these changes. The levels of inflammatory cells in nasal lavage fluid and pro-inflammatory factors in serum and nasal mucosa were significantly increased in AR mice, which were reduced by miR-224-5p overexpression. Of note, LV-miR-224-5p treatment remarkably suppressed the activations of NLRP3 inflammasome and the TLR4/MyD88/NF-κB pathway in AR mice. Furthermore, miR-224-5p could bind to 3’-untranslated region (3’-UTR) of TLR4 and negatively regulate TLR4 level. Overall, we conclude that miR-224-5p may relieve AR by negatively regulating TLR4/MyD88/NF-κB pathway, indicating that miR-224-5p may be a promising target for AR treatment.

Content from these authors
© 2021 Japanese Association for Laboratory Animal Science

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top