Skip to main content
Log in

DNA Methylation in Promoter Regions of Red Cell Membrane Protein Genes in Healthy Individuals and Patients with Hereditary Membrane Disorders

  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

The methylation state of 5′-CG-3′ sites is known to be linked to the regulation of promoter function by modulating DNA-protein interactions and to the structure of chromatin. As part of a project to determine methylation patterns in the human genome, we examined the methylation profiles of several genes for human erythroid membrane proteins: ELB42 (protein 4.2), EPB3 (band 3), SPTB gene (β-spectrin), and ANK1 (ankyrin). The bisulfite protocol of the genomic sequencing method was applied. The number of 5′-CG-3′ dinucleotides was the most abundant in SPTB and ANK1, much less in EPB3, and the least in ELB42. In the DNA of peripheral blood mononuclear cells from healthy individuals, the promoter regions of EPB3 and ELB42 were extensively methylated, but the SPTB and ANK1 promoters were totally unmethylated. We also investigated methylation profiles in peripheral blood mononuclear cells from patients with red cell membrane diseases, such as complete protein 4.2 deficiency due to ELB42 mutations, hereditary spherocytosis with EPB3 mutations, and hereditary elliptocytosis with SPTB mutations. The DNA methylation states in these genes of erythroid cells, which we obtained at the second phase of the 2-phase liquid culture of erythroid precursor cells in the peripheral blood, were essentially identical or very similar to those of peripheral blood mononuclear cells. In disease states, the DNA methylation profiles of these red cell membrane protein genes were essentially not different from those in healthy individuals (statistically not significant).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yawata Y. Cell Membrane: The Red Blood Cell as a Model. Weinheim, Germany: Wiley-VCH; 2003.

    Book  Google Scholar 

  2. Eber SE, Lux SE. Hereditary spherocytosis: defects in proteins that connect the membrane skeleton to the lipid bilayer. Semin Hematol. 2004;41:118–141.

    Article  PubMed  CAS  Google Scholar 

  3. Gallagher PG. Hereditary elliptocytosis: spectrin and protein 4.1R. Semin Hematol. 2004;41:142–164.

    Article  PubMed  CAS  Google Scholar 

  4. Tanner MJ. Molecular and cellular biology of the erythrocyte anion exchanger (AE1). Semin Hematol. 1993;30:34–57.

    PubMed  CAS  Google Scholar 

  5. Winkelmann JC, Chang JG, Tse WT, Scarpa AL, Marchesi VI, Forget BG. Full-length sequence of the cDNA from human erythroid β-spectrin. J Biol Chem. 1990;265:11827–11832.

    PubMed  CAS  Google Scholar 

  6. Cohen CM, Dotimas E, Korsgren C. Human erythrocyte membrane protein band 4.2 (pallidin). Semin Hematol. 1993;30:119–137.

    PubMed  CAS  Google Scholar 

  7. Yawata Y. Red cell membrane protein band 4.2: phenotypic, genetic and electron microscopic aspects. Biochim Biophys Acta. 1994;1204:131–148.

    Article  PubMed  CAS  Google Scholar 

  8. Yawata A, Kanzaki A, Gilsanz F, Delaunay J, Yawata Y. A markedly disrupted skeletal network with abnormally distributed intramembrane particles in complete protein 4.1-deficient red blood cells (allele 4.1 Madrid): implications regarding a critical role of protein 4.1 in maintenance of the integrity of the blood cell membrane. Blood. 1997;90:2471–2481.

    PubMed  CAS  Google Scholar 

  9. Boffa LC, Walker J, Chen TA, Sterner R, Mariani MR, Allfrey VG. Factors affecting nucleosome structure in transcriptionally active chromatin: histone acetylation, nascent RNA, and inhibitors of RNA synthesis. Eur J Biochem. 1990;194:811–823.

    Article  PubMed  CAS  Google Scholar 

  10. Doerfler W. DNA methylation and gene activity. Annu Rev Biochem. 1983;52:93–124.

    Article  PubMed  CAS  Google Scholar 

  11. Munnes M, Schetter C, Hölker I, Doerfler W. A fully 5′-CG-3′ but not a 5′-CCGG-3′ methylated late frog virus 3 promoter retains activity. J Virol. 1995;69:2240–2247.

    PubMed  PubMed Central  CAS  Google Scholar 

  12. Doerfler W. Foreign DNA in Mammalian Systems. Weinheim, Germany: Wiley-VCH; 2000.

    Google Scholar 

  13. Frommer M, McDonald LE, Millar DS, et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A. 1992;89:1827–1831.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Clark SJ, Harrison J, Paul CL, Frommer M. High sensitivity mapping of methylated cytosines. Nucleic Acids Res. 1994;22:2990–2997.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Kochanek S, Toth M, Dehmel A, Renz D, Doerfler W. Interindi- vidual concordance of methylation profiles in human genes for tumor necrosis factors α and β. Proc Natl Acad Sci U S A. 1990;87:8830–88344.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Kochanek S, Radbruch A, Tesch H, Renz D, Doerfler W. DNA methylation profiles in the human genes for tumor necrosis factors α and β in subpopulations of leukocytes and in leukemias. Proc Natl Acad Sci U S A. 1991;88:5759–5763.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Wada H, Suda T, Miura Y, Kajii E, Ikemoto S, Yawata Y. Expression of major blood group antigens on human erythroid cells in a two phase liquid culture system. Blood. 1990;75:505–511.

    CAS  PubMed  Google Scholar 

  18. Wada H, Kanzaki A, Yawata A, et al. Late expression of red cell membrane protein 4.2 in normal human erythroid maturation with seven isoforms of the protein 4.2 gene. Exp Hematol. 1999;27:54–62.

    Article  PubMed  CAS  Google Scholar 

  19. Zeschnigk M, Schmitz B, Dittrich B, Buiting K, Horsthemke B, Doerfler W. Imprinted segments in the human genome: different DNA methylation patterns in the Prader-Willi/Angelman syndrome region as determined by the genomic sequencing method. Hum Mol Genet. 1997;6:387–395.

    Article  PubMed  CAS  Google Scholar 

  20. Remus R, Kämmer C, Heller H, Schmitz B, Schell G, Doerfler W. Insertion of foreign DNA into an established mammalian genome can alter the methylation of cellular DNA sequences. J Virol. 1999; 73:1010–1022.

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983;166:557–580.

    Article  PubMed  CAS  Google Scholar 

  22. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA. 1997;74:5463–5467.

    Article  Google Scholar 

  23. Munnes M, Zuther I, Schmitz B, Doerfler W. A novel insertional mutation and differentially spliced mRNAs in the human BRCA1 gene. Gene Funct Dis. 2000;1:38–47.

    Article  CAS  Google Scholar 

  24. Sadahira Y, Kanzaki A, Wada H, Yawata Y. Immunohistochemical identification of erythroid precursors in paraffin embedded bone marrow sections: spectrin is a superior marker to glycophorin. J Clin Pathol. 1999;52:919–921.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Bouhassira EE, Schwartz RS, Yawata Y, et al. An alanine-to-threonine substitution in protein 4.2 cDNA is associated with Japanese form of hereditary hemolytic anemia (protein 4.2NIPPON). Blood. 1992;79:1846–1854.

    PubMed  CAS  Google Scholar 

  26. Inoue T, Kanzaki A, Yawata A, et al. Electron microscopic and physicobiochemical studies on disorganization of the cytoskeletal network and integral protein (band 3) in red cells of band 4.2 deficiency with a mutation (codon 142: GCT→ ACT). Int J Hematol. 1994;59:157–175.

    PubMed  CAS  Google Scholar 

  27. Kanzaki A, Yawata Y, Yawata A, et al. Band 4.2 Komatsu: 523 GAT→TAT (175 Asp→ Tyr) in exon 4 of the band 4.2 gene associated with total deficiency of band 4.2, hemolytic anemia with oval- ostomatocytosis and marked disruption of the cytoskeletal network. IntJ Hematol. 1995;61:165–178.

    Article  CAS  Google Scholar 

  28. Kanzaki A, Yasunaga M, Okamoto N, et al. Band 4.2 Shiga: 317 CGC→TGC in compound heterozygotes with 142 GCT→ACT result in band 4.2 deficiency and microspherocytosis. Br J Haematol. 1995;91:333–340.

    Article  PubMed  CAS  Google Scholar 

  29. Yawata Y. Band 4.2 abnormalities in human red cells. Am J Med Sci. 1994;307:190–203.

    Article  PubMed  CAS  Google Scholar 

  30. Yawata Y, Yawata A, Kanzaki A, et al. Electron microscopic evidence of impaired intramembrane particles and instability of the cytoskeletal network in band 4.2 deficiency in human red cells. Cell Motil Cytoskeleton. 1996;33:95–105.

    Article  PubMed  CAS  Google Scholar 

  31. Yawata Y, Kanzaki A, Yawata A, Doerfler W, Ozcan R, Eber SW. Characteristic features of genotype and phenotype of hereditary spherocytosis in the Japanese population. Int J Hematol. 2000;71:118–135.

    PubMed  CAS  Google Scholar 

  32. Inoue T, Kanzaki A, Kaku M, et al. Homozygous missense mutation (band 3 Fukuoka: G130R): a mild form of hereditary spherocytosis with near-normal band 3 content and minimal changes of membrane ultrastructure despite moderate protein 4.2 deficiency. Br J Haematol. 1998;102:932–939.

    Article  PubMed  CAS  Google Scholar 

  33. Maillet P, Inoue T, Kanzaki A, et al. Stop codon in exon 30 (E2069X) of β-spectrin gene associated with hereditary elliptocytosis in spectrin Nagoya. Hum Mutat. 1996;8:366–368.

    Article  PubMed  CAS  Google Scholar 

  34. Kruczek I, Doerfler W. Expression of the chloramphenicol acetyl- transferase gene in mammalian cells under the control of aden- ovirus type 12 promoters: effect of promoter methylation on gene expression. Proc Natl Acad Sci U S A. 1983;80:7586–7590.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Langner K-D, Vardimon L, Renz D, Doerfler W. DNA methylation of three 5′ C-C-G-G 3′ sites in the promoter and 5′ region inactivates the E2a gene of adenovirus type 2. Proc NatlAcad Sci U S A.1984;81:2950–2954.

    Article  CAS  Google Scholar 

  36. Langner K-D, Weyer U, Doerfler W. Trans effect of the E1 region of adenoviruses on the expression of a prokaryotic gene in mammalian cells: resistance to 5′-CCGG-3′ methylation. Proc Natl Acad Sci U S A.1986;83:1598–1602.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Weisshaar B, Langner K-D, Jüttermann R, et al. Reactivation of the methylation-inactivated late E2A promoter of adenovirus type 2 by E1 A (13S) functions. J Mol Biol. 1988;202:255–270.

    Article  PubMed  CAS  Google Scholar 

  38. Muiznieks I, Doerfler W.The impact of 5′-CG-3′ methylation on the activity of different eukaryotic promoters: a comparative study. FEBS Lett. 1994;344:251–254.

    Article  CAS  PubMed  Google Scholar 

  39. Vardimon L, Kressmann A, Cedar H, Maechler M, Doerfler W. Expression of a cloned adenovirus gene is inhibited by in vitro methylation. Proc Natl Acad Sci USA.1982;79:1073–1077.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Hanspal M, Palek J. Biogenesis of normal and abnormal red blood cell membrane skeleton. Semin Hematol. 1992;29:305–319.

    PubMed  CAS  Google Scholar 

  41. Liu SC, Derick LH. Molecular anatomy of the red blood cell membrane skeleton: structure-function relationship. Semin Hematol. 1992;29:231–243.

    PubMed  CAS  Google Scholar 

  42. Yawata Y, Kanzaki A, Yawata A. Genotypic and phenotypic expressions of protein 4.2 in human erythroid cells. Gene Funct Dis.20001:61–81.

    Article  CAS  Google Scholar 

  43. Peters LL, Jindel HK, Gwynn B, et al. Mild spherocytosis and altered red cell ion transport in protein 4.2-null mice. J Clin Invest. 1999;103:1527–1537.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Singal R, Ginder GD. DNA methylation. Blood.1999;93:4059–4070.

    PubMed  CAS  Google Scholar 

  45. Antequera F, Bird A. Number of CpG islands and genes in human and mouse. Proc Natl Acad Sci U S A. 1993;90:11995–11999.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Bird AP.Gene number, noise reduction and biological complexity. Trends Genet. 1995;11:94–100.

    Article  PubMed  CAS  Google Scholar 

  47. Cross SH, Bird AP. CpG islands and genes. Curr Opin Genet Dev. 1995;5:309–314.

    Article  PubMed  CAS  Google Scholar 

  48. Razin A, Cedar H. DNA methylation and gene expression. Micro-biol Rev. 1991;55:451–458.

    CAS  Google Scholar 

  49. Bird A. The essentials of DNA methylation. Cell.1992;70:5–8.

    Article  PubMed  CAS  Google Scholar 

  50. Inaba M, Yawata A, Koshino I, et al. Defective anion transport and marked spherocytosis with membrane instability caused by hereditary total deficiency of red cell band 3 in cattle due to a nonsense mutation. J Clin Invest.1996;97:1804–1817.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Rybicki AC, Heath R, Wolf JL, Lubin B, Schwartz RS. Deficiency of protein 4.2 in erythrocytes from a patient with a Coombs negative hemolytic anemia: evidence for a role of protein 4.2 in stabilizing ankyrin on the membrane. J Clin Invest.1988;81:893–901.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Jarolim P, Murray JL, Rubin HL, et al. Characterization of 13 novel band 3 gene defects in hereditary spherocytosis with band 3 deficiency. Blood.1996;88:4366–4374.

    PubMed  CAS  Google Scholar 

  53. Dhermy D, Galand C, Bournier O, et al. Heterogeneous band 3 deficiency in hereditary spherocytosis related to different band 3 gene defects. Br J Haematol. 1997;98:32–40.

    Article  PubMed  CAS  Google Scholar 

  54. Nakanishi H, Kanzaki A, Yawata Y, Yawata A. Ankyrin mutations in hereditary spherocytosis in Japan. Int J Hematol. 2001; 73:54–63.

    Article  PubMed  CAS  Google Scholar 

  55. Kanzaki A, Hayette S, Morle L, et al. Total absence of protein 4.2 and partial deficiency of band 3 in hereditary spherocytosis. Br J Haematol. 1997;99:522–530.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihito Yawata.

About this article

Cite this article

Remus, R., Kanzaki, A., Yawata, A. et al. DNA Methylation in Promoter Regions of Red Cell Membrane Protein Genes in Healthy Individuals and Patients with Hereditary Membrane Disorders. Int J Hematol 81, 385–395 (2005). https://doi.org/10.1532/IJH97.04171

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1532/IJH97.04171

Key words

Navigation