Skip to main content
Log in

Interferon- ζ/Limitin: Novel Type I Interferon That Displays a Narrow Range of Biological Activity

  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Interferon ζ (IFN-ζ)/limitin has been regarded as a novel type IIFN by the Nomenclature Committee of the International Society for Interferon and Cytokine Research. IFN-ζ/limitin, which has some sequence homology with IFN-α and IFN-ß, has a globular structure with 5 α helices and 4 loops and recognizes IFN-α/ß receptor. Although it displays antiviral, immunomodulatory, and antitumor effects, IFN-ζ/limitin has much less lymphomyelosuppressive activity than IFN-α. Unique interactions between IFN-ζ/limitin and the receptor probably led to the narrow range of signals and biological activities. A human homologue of IFN-ζ/limitin may be clinically more effective than IFN-α and IFN-ß because it has fewer adverse effects. Moreover, further analysis of the structure-function relationship may establish an engineered cytokine with the useful features of IFN-ζ/ limitin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maeyer E, Maeyer-Guignard J. Type I interferon. Int Rev Immunol. 1998;17:53–73.

    Article  PubMed  Google Scholar 

  2. Pfeffer LM, Dinarello CA, Herberman RB, et al. Biological properties of recombinant α-interferons: 40th anniversary of the discovery of interferons. Cancer Res. 1998;58:2489–2499.

    CAS  PubMed  Google Scholar 

  3. LaFleur DW, Nardelli B, Tsareva T, et al. Interferon-kappa, a novel type I interferon expressed in human keratinocytes. J Biol Chem. 2001;276:39765–39771.

    Article  CAS  Google Scholar 

  4. Kotenko SV, Gallagher G, Baurin VV, et al. IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nat Immunol. 2003;4:69–77.

    Article  CAS  PubMed  Google Scholar 

  5. Sheppard P, Kindsvogel W, Xu W, et al. IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat Immunol. 2003;4:63–68.

    Article  CAS  PubMed  Google Scholar 

  6. Kincade PW, Medina K, Pietrangeli CE, Hayashi S-I, Naemen AE. Stromal cell lines which support lymphocyte growth II: characteristics of a suppressive subclone. Adv Exp Med Biol. 1991;292:227–234.

    Article  CAS  PubMed  Google Scholar 

  7. Oritani K, Medina KL, Tomiyama Y, et al. Limitin: an interferon- like cytokine that preferentially influences B-lymphocyte precursors. Nat Med. 2000;6:659–666.

    Article  CAS  PubMed  Google Scholar 

  8. Kawamoto S, Oritani K, Asada H, et al. Antiviral activity of limitin against encephalomyocarditis virus, herpes simplex virus, and mouse hepatitis virus: diverse requirements by limitin and alpha interferon for interferon regulatory factor 1. J Virol. 2003;77:9622–9631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Takahashi I, Kosaka H, Oritani K, et al. A new IFN-like cytokine, limitin, modulates the immune response without influencing thymocyte development. J Immunol. 2001;167:3156–3163.

    Article  CAS  PubMed  Google Scholar 

  10. Domanski P, Colamonici OR. The type-I interferon receptor: the long and short of it. Cytokine Growth Factor Rev. 1996;7:143–151.

    Article  CAS  PubMed  Google Scholar 

  11. Cohen B, Novick D, Barak S, Rubinstein M. Ligand-induced association of the type I interferon receptor components. Mol Cell Biol. 1995;15:4208–4214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yan H, Krishnan K, Lim JT, Contillo LG, Krolewski JJ. Molecular characterization of an alpha interferon receptor 1 subunit (IFNaR1) domain required forTYK2 binding and signal transduction. Mol Cell Biol. 1996;16:2074–2082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Leung S, Qureshi SA, Kerr IM, Darnell JE Jr, Stark GR. Role of STAT2 in the alpha interferon signaling pathway. Mol Cell Biol. 1995;15:1312–1317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Improta T, Schindler C, Horvath CM, et al. Transcription factor ISGF-3 formation requires phosphorylated Stat91 protein, but Stat113 protein is phosphorylated independently of Stat91 protein. Proc Natl Acad Sci USA. 1994;91:4776–4780.

    Article  CAS  PubMed  Google Scholar 

  15. Haque SJ, Williams BR. Identification and characterization of an interferon (IFN)-stimulated response element-IFN-stimulated gene factor 3-independent signaling pathway for IFN-alpha. J Biol Chem. 1994;269:19523–19529.

    CAS  PubMed  Google Scholar 

  16. Taniguchi T, Ogasawara K, Takaoka A, Tanaka N. IRF family of transcription factors as regulators of host defense. Annu Rev Immunol. 2001;19:623–655.

    Article  CAS  PubMed  Google Scholar 

  17. Ahmad S, Alsayed YM, Druker BJ, Platanias LC. The type I interferon receptor mediates tyrosine phosphorylation of the CrkL adaptor protein. J Biol Chem. 1997;272:29991–29994.

    Article  CAS  PubMed  Google Scholar 

  18. Shimoda K, Kamesaki K, Numata A, et al. Cutting edge: tyk2 is required for the induction and nuclear translocation of Daxx which regulates IFN-alpha-induced suppression of B lymphocyte formation. J Immunol. 2002;169:4707–4711.

    Article  CAS  PubMed  Google Scholar 

  19. Muller U, Steinhoff U, Reis LF, et al. Functional role of type I and type II interferons in antiviral defense. Science. 1994;264:1918–1921.

    Article  CAS  PubMed  Google Scholar 

  20. Gribaudo G, Lembo D, Cavallo G, Landolfo S, Lengyel P. Interferon action: binding of viral RNA to the 40-kilodalton 2’-5’- oligoadenylate synthetase in interferon-treated Hela cells infected with encephalomyocarditis virus. J Virol. 1991;65:1748–1757.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Lengyel P. Biochemistry of interferons and their actions. Annu Rev Biochem. 1982;51:251–282.

    Article  CAS  PubMed  Google Scholar 

  22. Samuel CE, Duncan GS, Knutson GS, Hershey JWB. Mechanisms of interferon action. J Biol Chem. 1984;259:13451–13457.

    CAS  PubMed  Google Scholar 

  23. Pavlovic J, Zurcher T, Haller O, Staeheli P. Resistance to influenza virus and vesicular stomatitis virus conferred by expression of human MxA protein. J Virol. 1990;64:3370–3375.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ortaldo JR, Mantovani A, Hobbs D, et al. Effects of several species of human leukocyte interferon on cytotoxic activity of NK cells and monocytes. Int J Cancer. 1983;31:285–289.

    Article  CAS  PubMed  Google Scholar 

  25. Blackman MJ, Morris AG. The effect of interferon treatment of targets on susceptibility to cytotoxic T-lymphocyte killing: augmentation of allogenic killing and virus specific killing relative to viral antigen expression. Immunology. 1985;56:451–457.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Fellous M, Nir U, Wallach D, et al. Interferon-dependent induction of mRNA for the major histocompatibility antigens in human fibro- blasts and lymphoblastoid cells. Proc Natl Acad Sci USA. 1982;79:3082–3086.

    Article  CAS  PubMed  Google Scholar 

  27. Yamada G, Ogawa M, Akagi K, et al. Specific depletion of the pre B-cell population induced by aberrant expression of human interferon regulatory factor 1 gene in transgenic mice. Proc Natl Acad Sci US A. 1991;88:532–536.

    Article  CAS  Google Scholar 

  28. Holtschke T, Lohler J, Kanno Y, et al: Immunodeficiency and chronic myelogenous leukemia-like syndrome in mice with a targeted mutation of the ICSBP gene. Cell. 1996;87:307–317.

    Article  CAS  PubMed  Google Scholar 

  29. Koromilas AE, Roy S, Barber GN, Katze MG, Sonenberg N. Malignant transformation by a mutant of the IFN-inducible dsRNA- dependent protein kinase. Science. 1992;257:1685–1689.

    Article  CAS  PubMed  Google Scholar 

  30. Rysiecki G, Gewert DR, Williams BRG. Constitutive expression of a 2’,5’-oligoadenylate synthetase cDNA results in increased antiviral activity and growth suppression. J Interferon Res. 1989;9:649–657.

    Article  CAS  PubMed  Google Scholar 

  31. Tamura T, Ishihara M, Lamphier MS, et al. An IRF-1-dependent pathway of DNA damage-induced apoptosis in mitogen activated T lymphocytes. Nature. 1995;376:596–599.

    Article  CAS  PubMed  Google Scholar 

  32. Takaoka A, Hayakawa S, Yanai H, et al. Integration of inter- feron-α/ß signaling to p53 responses in tumor suppression and antiviral defence. Nature. 2003;424:516–523.

    Article  CAS  PubMed  Google Scholar 

  33. Platanias LC, Uddin S, Bruno E, et al. CrkL and CrkII participate in the generation of the growth inhibitory effects of interferons on pri- mary hematopoietic progenitors. Exp Hematol. 1999;27:1315–1321.

    Article  CAS  PubMed  Google Scholar 

  34. Gongora R, Stephan RP, Zhang Z, Cooper MD. An essential role for Daxx in the inhibition of B lymphopoiesis by type I interferons. Immunity. 2001;14:727–737.

    Article  CAS  PubMed  Google Scholar 

  35. Jonasch E, Haluska FG. Interferon in oncological practice: review of interferon biology, clinical applications, and toxicities. Oncologist 2001;6:34–55.

    Article  CAS  PubMed  Google Scholar 

  36. Shaw GD, Boll W, Taira H, et al. Structure and expression of cloned murine IFN-alpha genes. Nucleic Acids Res. 1983;11:555–573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Higashi Y, Sokawa Y, Watanabe Y, et al. Structure and expression of a cloned cDNA for mouse interferon-beta. J Biol Chem. 1983; 258:9522–9529.

    CAS  PubMed  Google Scholar 

  38. Oritani K, Kincade PW, Zhang C, Tomiyama Y, Matsuzawa Y. Type I interferons and limitin: a comparison of structures, recep- tors, and functions. Cytokine Growth Factor Rev. 2001;12:337–348.

    Article  CAS  PubMed  Google Scholar 

  39. Uze G, Lutfalla G, Mogensen KE. α and ß interferons and their receptor and their friends and relations. J Interferon Cytokine Res. 1995;15:3–26.

    Article  CAS  PubMed  Google Scholar 

  40. Oritani K, Kincade PW, Tomiyama Y. Limitin: an interferon-like cytokine without myeloerythroid suppressive properties. J Mol Med.2001;79:168–174.

    Article  CAS  PubMed  Google Scholar 

  41. Oritani K, Hirota S, Nakagawa T, et al. T lymphocytes constitu- tively produce an interferonlike cytokine limitin characterized as a heat- and acid-stable and heparin-binding glycoprotein. Blood. 2003;101:178–185.

    Article  CAS  PubMed  Google Scholar 

  42. Takaoka A, Taniguchi T. New aspects of IFN-alpha/beta signalling in immunity, oncogenesis and bone metabolism. Cancer Sci. 2003; 94:405–411.

    Article  CAS  PubMed  Google Scholar 

  43. Kawamoto S, Oritani K, Asakura E, et al. A new interferon, limitin displays equivalent immunomodulatory and antitumor activities without myelosuppressive properties as compared with interferon- alpha. Exp Hematol. 2004;32:797–805.

    Article  CAS  PubMed  Google Scholar 

  44. Sperber S, Hunger S, Schwartz B, Pestka S. Anti-rhinoviral activity of recombinant and hybrid species of interferon alpha. Antiviral Res. 1993;22:121–129.

    Article  CAS  PubMed  Google Scholar 

  45. Foster GR, Finter NB. Are all type I human interferons equivalent? J Viral Hepat. 1998;5:143–152.

    Article  CAS  PubMed  Google Scholar 

  46. Rani SMR, Foster GR, Leung S, et al. Characterization of beta-R1, a gene that is selectively induced by interferon-beta (IFN-beta) compared with IFN-alpha. J Biol Chem. 1996;271:22878–22884.

    Article  CAS  PubMed  Google Scholar 

  47. Abramovich C, Shulman LM, Ratovitski E, et al. Differential tyro- sine phosphorylation of the IFNAR chain of the type I interferon receptor and an associated surface protein in response to IFN alpha and IFN beta. EMBO J. 1994;13:5871–5877.

    Article  CAS  Google Scholar 

  48. Cebrian M, Yague E, Landazuri MO, et al. Different functional sites on rIFN-alpha 2 and their relation to the cellular binding site. J Immunol. 1987;138:484–490.

    CAS  PubMed  Google Scholar 

  49. Kontsek P, Borecky L, Kontsekova E, et al. Mapping of two immunodominant structures on human interferon alpha 2c and their role in binding to cells. Mol Immunol. 1991;28:1289–1297.

    Article  CAS  PubMed  Google Scholar 

  50. Uze G, Di Marco S, Mouchel-Vielh E, et al. Domains of interaction between alpha interferon and its receptor components. J Mol Biol. 1994;243:245–257.

    Article  CAS  PubMed  Google Scholar 

  51. Runkel L, Pfeffer L, Lewerenz M, et al. Differences in activity between alpha and beta type I interferons explored by mutational analysis. J Biol Chem. 1998;273:8003–8008.

    Article  CAS  PubMed  Google Scholar 

  52. Shorts LH, Dancz CE, Shupp JW, Pontzer CH. Characterization of N-terminal interferon tau mutants: P26L affords enhanced activity and lack of toxicity. Exp Biol Med. 2004;229:194–202.

    Article  CAS  Google Scholar 

  53. Bascosi M, Russo F, D'Innocenzo S, et al. Amantadine and inter- feron in the combined treatment of hepatitis C virus in elderly patients. Hepatol Res. 2002;22:231–239.

    Article  Google Scholar 

  54. Reddy KR, Wright TL, Pockros PJ, et al. Efficacy and safety of pegylated (40-kd) interferon alpha-2a compared with interferon alpha-2a in noncirrhotic patients with chronic hepatitis C. Hepatology. 2001;33:433–438.

    Article  CAS  PubMed  Google Scholar 

  55. Melian EB, Plosker GL. Interferon alphacon-1: a review of its pharmacology and therapeutic efficacy in the treatment of chronic hepatitis C. Drugs. 2001;61:1661–1691.

    Article  CAS  PubMed  Google Scholar 

  56. Weiss K. Safety profile of interferon-α therapy. Semin Oncol. 1998; 25:9–13.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Oritani.

About this article

Cite this article

Oritani, K., Tomiyama, Y. Interferon- ζ/Limitin: Novel Type I Interferon That Displays a Narrow Range of Biological Activity. Int J Hematol 80, 325–331 (2004). https://doi.org/10.1532/IJH97.04087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1532/IJH97.04087

Key words

Navigation