Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Strategic Study of CAE >> 2023, Volume 25, Issue 1 doi: 10.15302/J-SSCAE-2023.01.014

Integrated Development of Urban Rail Transit and Energy Systems Supported by Underground Space

1. School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, China;
2. School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
3. State Key Laboratory of Disaster Prevention and Mitigation of Explosion and Impact, Nanjing 210007, China;
4. Institute of National Defense Engineering, Academy of Military Sciences, Beijing 100036, China

Funding project:Chinese Academy of Engineering project “Research on the Development Strategy of Underground Energy Storage for Low- Carbon Operation of Subway” (2022-XY-75); National Natural Science Fund project (52177112,52278419) Received: 2022-12-28 Revised: 2023-01-30 Available online: 2023-02-08

Next Previous

Abstract

Cities consume a large amount of energies owing to their high population density and centralized economy, and have high concentration of various risks. Energy and transportation are key areas for carbon emission reduction in urban areas and significant components of urban lifeline engineering. Therefore, the integrated development of energy and transportation systems is crucial for the low-carbon and resilient construction of cities. This study first reviews the low-carbon and resilient development status of urban rail transit and energy systems, covering three aspects: low-carbon development of urban rail transit, resilience assessment and improvement, and security protection and risk assessment of energy storage systems. Moreover, the concept of an underground-spacesupported multi-energy-integrated urban rail transit system is proposed, elaborating the operating modes of the system in normal times and extreme conditions. Subsequently, benefits of the proposed system are analyzed from the perspectives of environment, economy,and society, and future research directions and key problems to be solved are introduced. Furthermore, the following suggestions are proposed: (1) improving the policy mechanism for the multi-energy-integrated urban rail transit system and promoting coordinated governance by multiple departments, (2) constructing a technology innovation system for the system to realize low-carbon, safe, and efficient operation of urban rail transit, and (3) promoting the development of a coordinated management system for urban power grids and rail transit to enhance urban resilience.

Figures

图1

图2

图3

图 4

图5

References

[ 1 ] 别朝红 , 任彦哲 , 李更丰 , 等‍ . " 双碳"目标下城市能源系统的形态结构和发展路径 [J]‍. 电力系统自动化 , 2022 , 46 17 : 3 ‒ 15 ‍.
Bie Z H , Ren Y Z , Li G F , al e t ‍. Morphological structure and development path of urban energy system for carbon emission peak and carbon neutrality [J]‍. Automation of Electric Power Systems , 2022 , 46 17 : 3 ‒ 15 ‍.

[ 2 ] Shen L Y, Wu Y, Shuai C Y, al et‍. Analysis on the evolution of low carbon city from process characteristic perspective [J]‍. Journal of Cleaner Production, 2018, 187: 348‒360‍.

[ 3 ] 徐智邦 , 焦利民 , 王玉‍ . 1988—2018年中国城市实体地域与行政地域用地扩张对比 [J]‍. 地理学报 , 2022 , 77 10 : 2514 ‒ 2528 ‍.
Xu Z B , Jiao L M , Wang Y‍ . Comparison of urban land expansion between urban physical and administrative areas in China from 1988 to 2018 [J]‍. Acta Geographica Sinica , 2022 , 77 10 : 2514 ‒ 2528 ‍.

[ 4 ] 陈乐 , 李郇 , 姚尧 , 等‍ . 人口集聚对中国城市经济增长的影响分析 [J]‍. 地理学报 , 2018 , 73 6 : 1107 ‒ 1120 ‍.
Chen L , Li X , Yao Y , al e t ‍. Effects of population agglomeration on urban economic growth in China [J]‍. Acta Geographica Sinica , 2018 , 73 6 : 1107 ‒ 1120 ‍.

[ 5 ] 中国投资协会创新投融资专业委员会 , 《环球》 , 中国人民大学生态金融研究中心 , 等‍ . 2020中国绿色城市指数Top50报告 [R]‍. 北京 : 中国投资协会创新投融资专业委员会, 《环球》, 中国人民大学生态金融研究中心, 等, 2021 ‍.
China Investment Association Innovation Investment and Financing Specialized Committee , Global , Ecological Finance Research Center of Renmin University of China , al e t ‍. 2020 China green city index Top50 report [R]‍. Beijing : China Investment Association Innovation Investment and Financing Specialized Committee, Global, Ecological Finance Research Center of Renmin University of China, et al, 2021 ‍.

[ 6 ] 张保留 , 白梓函 , 阳平坚 , 等‍ . 城市碳达峰碳中和行动评估方法与应用 [EBOL]‍. 2022-10-25 [ 2022-12-15 ]‍. https:doi‍.org10‍.13227j‍.hjkx‍.202208091‍ .
Zhang B L , Bai Z H , Yang P J , al e t ‍. Evaluation method and application for urban carbon peaking neutrality performance [EBOL]‍. 2022-10-25 [ 2022-12-15 ]‍. https:doi‍.org10‍.13227j‍.hjkx‍.202208091‍ . link1

[ 7 ] 时珊珊 , 崔正达 , 陈颖 , 等‍ . 电气化交通和城市电网协同韧性提升方法综述 [J]‍. 电工电能新技术 , 2022 , 41 3 : 43 ‒ 54 ‍.
Shi S S , Cui Z D , Chen Y , al e t ‍. Review of resilience enhancement methods with coordination of electrified transportation system and urban power grid [J]‍. Advanced Technology of Electrical Engineering and Energy , 2022 , 41 3 : 43 ‒ 54 ‍.

[ 8 ] 许慧 , 李杨 , 邓宁辉 , 等‍ . 城市复杂公共空间系统韧性建模研究 [J]‍. 系统工程理论与实践 , 2022 , 42 7 : 1964 ‒ 1978 ‍.
Xu H , Li Y , Deng N H , al e t ‍. Resilience modeling of complex urban public space system [J]‍. Systems Engineering‒Theory Practice , 2022 , 42 7 : 1964 ‒ 1978 ‍.

[ 9 ] 中华人民共和国住房和城乡建设部 , 中华人民共和国国家发展和改革委员会‍ . " 十四五"全国城市基础设施建设规划 [EBOL]‍. 2022-07-29 [ 2022-11-12 ]‍. https:www‍.mohurd‍.gov‍.cngongkaifdzdgknrzfhcxjsbwj20220720220729_767388‍.html‍ .
Ministry of Housing and Urban-Rural Development of the People´s Republic of China , National Development and Reform Commission‍ . The 14th Five-Year Plan for national urban infrastructure construction [EBOL]‍. 2022-07-29 [ 2022-11-12 ]‍. https:www‍.mohurd‍.gov‍.cngongkaifdzdgknrzfhcxjsbwj20220720220729_767388‍.html‍ . link1

[10] 张儒峰 , 李雪 , 姜涛 , 等‍ . 城市综合能源系统韧性评估与提升综述 [J]‍. 全球能源互联网 , 2021 , 4 2 : 122 ‒ 132 ‍.
Zhang R F , Li X , Jiang T , al e t ‍. Review on resilience assessment and enhancement of urban integrated energy system [J]‍. Journal of Global Energy Interconnection , 2021 , 4 2 : 122 ‒ 132 ‍.

[11] 刘爱华 , 吴超 , 徐文彬‍ . 基于脆性熵的城市生命线灾损敏感性评估 [J]‍. 中南大学学报自然科学版 , 2016 , 47 8 : 2793 ‒ 2801 ‍.
Liu A H , Wu C , Xu W B‍ . Damage sensitivity evaluation of urban lifeline based on brittleness entropy [J]‍. Journal of Central South UniversityScience and Technology , 2016 , 47 8 : 2793 ‒ 2801 ‍.

[12] 韩肖清 , 李廷钧 , 张东霞 , 等‍ . 双碳目标下的新型电力系统规划新问题及关键技术 [J]‍. 高电压技术 , 2021 , 47 9 : 3036 ‒ 3046 ‍.
Han X Q , Li T J , Zhang D X , al e t ‍. New issues and key technologies of new power system planning under double carbon goals [J]‍. High Voltage Engineering , 2021 , 47 9 : 3036 ‒ 3046 ‍.

[13] 贾宏杰 , 穆云飞 , 侯恺 , 等‍ . 能源转型视角下城市能源系统的形态演化及运行调控 [J]‍. 电力系统自动化 , 2021 , 45 16 : 49 ‒ 62 ‍.
Jia H J , Mu Y F , Hou K , al e t ‍. Morphology evolution and operation regulation of urban energy system from perspective of energy transition [J]‍. Automation of Electric Power Systems , 2021 , 45 16 : 49 ‒ 62 ‍.

[14] Yodo N, Arfin T‍. A resilience assessment of an interdependent multi-energy system with microgrids [J]‍. Sustainable and Resilient Infrastructure, 2021, 6(1‒2): 42‒55‍.

[15] 中华人民共和国国家发展和改革委员会 , 国家能源局‍ . 关于印发《"十四五"新型储能发展实施方案》的通知 [EBOL]‍. 2022-03-21 [ 2022-11-29 ]‍. https:www‍.ndrc‍.gov‍.cnxwdttzgg202203t20220321_1319773‍.html‍ .
National Development and Reform Commission, National Energy Administration‍ . Notice on the issuance of The 14th Five-Year Plan for the development of new energy storage [EBOL]‍. 2022-03-21 [ 2022-11-29 ]‍. https:www‍.ndrc‍.gov‍.cnxwdttzgg202203t20220321_1319773‍.html‍ . link1

[16] 王久平‍ . 及时应对储能安全风险挑战——从"4·16"北京丰台供电公司火灾事件说起 [J]‍. 中国应急管理 , 2021 5 : 10 ‒ 13 ‍.
Wang J P‍ . Timely response to energy storage security risk challenges-from the "4·16" Beijing Fengtai power supply company fire incident [J]‍. China Emergency Management , 2021 5 : 10 ‒ 13 ‍.

[17] Qiao Y K, Peng F L, Sabri S, al et‍. Low carbon effects of urban underground space [J]‍. Sustainable Cities and Society, 2019, 45: 451‒459‍.

[18] Cui J Q, Broere W, Lin D‍. Underground space utilisation for urban renewal [J]‍. Tunnelling and Underground Space Technology, 2021, 108: 103726‍.

[19] 韩宝明 , 李亚为 , 鲁放 , 等‍ . 2021年世界城市轨道交通运营统计与分析综述 [J]‍. 都市快轨交通 , 2022 , 35 1 : 5 ‒ 11 ‍.
Han B M , Li Y W , Lu F , al e t ‍. Statistical analysis of urban rail transit operations in the world in 2021: A review [J]‍. Urban Rapid Rail Transit , 2022 , 35 1 : 5 ‒ 11 ‍.

[20] 施仲衡 , 丁树奎‍ . 城市轨道交通绿色低碳发展策略 [J]‍. 都市快轨交通 , 2022 , 35 1 : 1 ‒ 4 ‍.
Shi Z H , Ding S K‍ . Strategies for green and low-carbon development of urban rail transit [J]‍. Urban Rapid Rail Transit , 2022 , 35 1 : 1 ‒ 4 ‍.

[21] Anupriya, Graham D J, Carbo J M, al et‍. Understanding the costs of urban rail transport operations [J]‍. Transportation Research Part B: Methodological, 2020, 138: 292‒316‍.

[22] 赵旭东 , 陈志龙 , 许继恒 , 等‍ . 地震灾害下城市双层关联生命线网络易损性 [J]‍. 浙江大学学报工学版 , 2020 , 54 4 : 767 ‒ 777 ‍.
Zhao X D , Chen Z L , Xu J H , al e t ‍. Seismic vulnerability of urban double-layer interdependent lifeline network [J]‍. Journal of Zhejiang UniversityEngineering Science , 2020 , 54 4 : 767 ‒ 777 ‍.

[23] Zhang D M, Du F, Huang H W, al et‍. Resiliency assessment of urban rail transit networks: Shanghai metro as an example [J]‍. Safety Science, 2018, 106: 230‒243‍.

[24] 成都市人防建筑设计研究院有限公司‍ . 俄乌战争对地铁和地下综合管廊人民防空防护体系建设的思考 [EBOL]‍. 2022-04-15 [ 2022-11-29 ]‍. ‍ https:mp‍.‍weixin‍.‍qq‍.‍comsLKo1h8YZBkNI46CK4tzHWg‍ .
Chengdu Civil Air Defense Academy Co‍., Ltd‍ . Reflections on the construction of civil air defense protection system in subway and underground integrated pipeline gallery during the Russo-Ukrainian war [EBOL]‍. 2022-04-15 ‍[ 2022-11-29 ]‍. https:mp‍.weixin‍.qq‍.comsLKo1h8YZBkNI46CK4tzHWg‍ . link1

[25] 中华人民共和国交通运输部‍ . " 十四五"现代综合交通运输体系发展规划 [EBOL]‍. 2022-01-19 [ 2022-11-19 ]‍. https:xxgk‍.mot‍.gov‍.cn2020jigouzhghs202201t20220119_3637245‍.html‍ .
Ministry of Transport of the People´s Republic of China‍ . The 14th Five-Year Plan for the development of modern comprehensive transport system [EBOL]‍. 2022-01-19 [ 2022-11-19 ]‍. https:xxgk‍.mot‍.g ov‍.cn2020jigouzhghs202201t20220119_3637245‍.html‍ . link1

[26] 江里舟 , 别朝红 , 龙涛 , 等‍ . 能源交通一体化系统发展模式与运行关键技术 [J]‍. 中国电机工程学报 , 2022 , 42 4 : 1285 ‒ 1301 ‍.
Jiang L Z , Bie Z H , Long T , al e t ‍. Development model and key technology of integrated energy and transportation system [J]‍. Proceedings of the CSEE , 2022 , 42 4 : 1285 ‒ 1301 ‍.

[27] 贾利民 , 程鹏 , 张蜇 , 等‍ . " 双碳"目标下轨道交通与能源融合发展路径和策略研究 [J]‍. 中国工程科学 , 2022 , 24 3 : 173 ‒ 183 ‍.
Jia L M , Cheng P , Zhang Z , al e t ‍. Integrated development of rail transit and energies in China: Development paths and strategies [J]‍. Strategic Study of CAE , 2022 , 24 3 : 173 ‒ 183 ‍.

[28] 李佩娟‍ . 2022年中国地铁行业全景图谱 [R]‍. 深圳 : 前瞻产业研究院 , 2022 ‍.
Li P J‍ . Panorama of China´s subway industry in 2022 [R]‍. Shenzhen : Forward Industry Research Institute , 2022 ‍.

[29] 粟月欢 , 张宇 , 段华波 , 等‍ . 地铁建设环境影响评估及减排效益研究: 以深圳市为例 [J]‍. 环境工程 , 2022 , 40 5 : 184 ‒ 192 ‍.
Su Y H , Zhang Y , Duan H B , al e t ‍. Research on environmental impact assessment and emission reduction potential of metro construction: A case study in Shenzhen, China [J]‍. Environmental Engineering , 2022 , 40 5 : 184 ‒ 192 ‍.

[30] 林元正 , 林添良 , 陈其怀 , 等‍ . 电动工程机械关键技术研究进展 [J]‍. 液压与气动 , 2021 , 45 12 : 1 ‒ 12 ‍.
Lin Y Z , Lin T L , Chen Q H , al e t ‍. Research progress on key technologies of electric construction machinery [J]‍. Chinese Hydraulics Pneumatics , 2021 , 45 12 : 1 ‒ 12 ‍.

[31] 张成玉 , 王馨宇‍ . 欧洲工程机械电动化趋势及中国制造商进入欧洲市场面临的挑战 [J]‍. 工程机械 , 2021 , 52 12 : 97 ‒ 100 ‍.
Zhang C Y , Wang X Y‍ . Electrification trend of European construction machinery and challenges faced by Chinese manufacturers entering the European market [J]‍. Construction Machinery and Equipment , 2021 , 52 12 : 97 ‒ 100 ‍.

[32] 朱旻 , 孙晓辉 , 陈湘生 , 等‍ . 地铁地下车站绿色高效智能建造的思考 [J]‍. 隧道建设中英文 , 2021 , 41 12 : 2037 ‒ 2047 ‍.
Zhu M , Sun X H , Chen X S , al e t ‍. Green, efficient, and intelligent construction of underground metro station [J]‍. Tunnel Construction , 2021 , 41 12 : 2037 ‒ 2047 ‍.

[33] 丁怡婷‍ . 我国可再生能源发电量稳步增长 [N]‍. 人民日报 , 2022-01-29 06‍.
Ding Y T‍ . Renewable energy generation is growing steadily [N]‍. People´s Daily , 2022-01-29 06‍.

[34] 朱峰林‍ . 某陆上风电场风机基础选型及结构安全性分析 [J]‍. 水电与新能源 , 2018 , 32 10 : 72 ‒ 75 ‍.
Zhu F‍ L . Selection and structural safety analysis of the wind turbine foundation for a land wind farm [J]‍. Hydropower and New Energy , 2018 , 32 10 : 72 ‒ 75 ‍.

[35] 马隆龙 , 唐志华 , 汪丛伟 , 等‍ . 生物质能研究现状及未来发展策略 [J]‍. 中国科学院院刊 , 2019 , 34 4 : 434 ‒ 442 ‍.
Ma L L , Tang Z H , Wang C W , al e t ‍. Research status and future development strategy of biomass energy [J]‍. Bulletin of Chinese Academy of Science , 2019 , 34 4 : 434 ‒ 442 ‍.

[36] 戴靠山 , 唐精 , 何任飞 , 等‍ . 城市风能利用在绿色建筑中的运用综述 [J]‍. 绿色建筑 , 2017 , 9 3 : 44 ‒ 48 ‍.
Dai K S , Tang J , He R F , al e t ‍. Introduction on application of city wind energy in green building [J]‍. Green Building , 2017 , 9 3 : 44 ‒ 48 ‍.

[37] 吕欣乐‍ . 促进城市轨道交通减少碳排放的策略与思考 [J]‍. 城市轨道交通 , 2022 9 : 28 ‒ 29 ‍.
L‍ Lyu X . Strategies and considerations on promoting urban rail transit to reduce carbon emissions [J]‍. China Metros , 2022 9 : 28 ‒ 29 ‍.

[38] 苏州市人民政府国有资产监督管理委员会‍ . 高新区国企屋顶光伏电站项目成功并网发电 [EBOL]‍. 2019-07-10 [ 2023-01-15 ]‍. ‍ http:guozw‍.‍suzhou‍.‍gov‍.‍cngzwszgz201907AD6AAUZH5ELZJ7V50R6PW41ZEJ2Y6VZL‍.‍shtml‍ .
Assets Supervision and Administration Commission of Suzhou Municipal People´s Government‍ . High-tech zone state enterprise roof photovoltaic power station project successfully connected to the grid for power generation [EBOL]‍. 2019-02-10 [ 2023-07-15 ]‍. ‍ http:guozw‍.‍suzhou‍.‍gov‍.‍cngzwszgz201907AD6AAUZH5ELZJ7V50R6PW41ZEJ2Y6VZL‍.shtml‍ . link1

[39] 陈凌馨‍ . 青岛城市轨道交通驶入绿色快车道 [N]‍. 中国经济时报 , 2022-04-15 03‍.
Chen L X‍ . Qingdao urban rail transit enters the green express lane [N]‍. China Economic Times , 2022-04-15 03‍.

[40] Khodaparastan M, Mohamed A A, Brandauer W‍. Recuperation of regenerative braking energy in electric rail transit systems [J]‍. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(8): 2831‒2847‍.

[41] 吴彩秀 , 李红佗 , 庄舜雄‍ . 地铁列车节能技术应用研究 [J]‍. 现代城市轨道交通 , 2022 8 : 33 ‒ 37 ‍.
Wu C X , Li H T , Zhuang S X‍ . Research on the application of energy-conservation technology for metro trains [J]‍. Modern Urban Transit , 2022 8 : 33 ‒ 37 ‍.

[42] Vasisht M S, Vashista G A, Srinivasan J, al et‍. Rail coaches with rooftop solar photovoltaic systems: A feasibility study [J]‍. Energy, 2017, 118: 684‒691‍.

[43] Wang H, Yang X, Wu J J, al et‍. Metro timetable optimisation for minimising carbon emission and passenger time: A bi-objective integer programming approach [J]‍. IET Intelligent Transport Systems, 2018, 12: 673‒681‍.

[44] 白宣‍ . 北京地铁再生制动能量吸收装置节能效果对比分析 [J]‍. 铁道技术监督 , 2021 , 49 5 : 43 ‒ 46 ‍.
Bai X‍ . Comparative analysis of energy saving effect of regenerative braking energy absorption device in Beijing subway [J]‍. Railway Quality Control , 2021 , 49 5 : 43 ‒ 46 ‍.

[45] 李明 , 张骄 , 崔霆锐 , 等‍ . 北京地铁绿色低碳技术创新研究与应用 [J]‍. 机车电传动 , 2022 , 286 3 : 29 ‒ 36 ‍.
Li M , Zhang J , Cui T R , al e t ‍. Research and application of green and low-carbon innovation in Beijing subway [J]‍. Electric Drive for Locomotives , 2022 , 286 3 : 29 ‒ 36 ‍.

[46] 俞慧友 , 姜波‍ . 地铁用上兆瓦级飞轮储能装置有望年节电50万度 [N]‍. 科技日报 , 2022-04-20 05‍.
Yu H Y , Jiang B‍ . Upper MW flywheel energy storage device for subway is expected to save 5 × 10 5 degrees of power annually [N]‍. Science and Technology Daily , 2022-04-20 05‍.

[47] 陈海生 , 李泓 , 马文涛 , 等‍ . 2021年中国储能技术研究进展 [J]‍. 储能科学与技术 , 2022 , 11 3 : 1052 ‒ 1076 ‍.
Chen H S , Li H , Ma W T , al e t ‍. Research progress of energy storage technology in China in 2021 [J]‍. Energy Storage Science and Technology , 2022 , 11 3 : 1052 ‒ 1076 ‍.

[48] 王一飞 , 杨飞 , 徐川‍ . 电网规模化储能应用研究综述 [J]‍. 湖北电力 , 2020 , 44 3 : 23 ‒ 30 ‍.
Wang Y F , Yang , F , Xu C‍ . Research overview of large-scale energy storage application of power grid [J]‍. Hubei Electric Power , 2020 , 44 3 : 23 ‒ 30 ‍.

[49] Sridhar S, R‍ Salkuti S. Development and future scope of renewable energy and energy storage systems [J]‍. Smart Cities, 2022, 5(2): 668‒699‍.

[50] 李建林 , 谭宇良 , 赵锦 , 等‍ . 电网侧储能发展态势及技术走向 [J]‍. 电器与能效管理技术 , 2020 5 : 1 ‒ 6 ‍.
Li J L , Tan Y L , Zhao J , al e t ‍. Development situation and technology trend of grid-side energy storage [J]‍. Electrical Energy Management Technology , 2020 5 : 1 ‒ 6 ‍.

[51] Koohi-Fayegh S, A‍ Rosen M. A review of energy storage types, applications and recent developments [J]‍. Journal of Energy Storage, 2020, 27: 101047‍.

[52] 刘金朋 , 侯焘‍ . 氢储能技术及其电力行业应用研究综述及展望 [J]‍. 电力与能源 , 2020 , 41 2 : 230 ‒ 233 ‍.
Liu J P , Hou T‍ . Review and prospect of hydrogen energy storage technology and its application in power industry [J]‍. Power Energy , 2020 , 41 2 : 230 ‒ 233 ‍.

[53] 颜文婷 , 杨隆 , 李长城 , 等‍ . 考虑地震攻击交通网影响的配电网韧性评估及提升策略 [EBOL]‍. 2023-01-12 [ 2023-01-18 ]‍. https:doi‍.org10‍.16183j‍.cnki‍.jsjtu‍.2022‍.152‍ .
Yan W T , Yang L , Li C C , al e t ‍. Resilience evaluation and enhancement strategy of distribution network considering the impact of seismic attack on transportation networks [EBOL]‍. 2023-01-12 [ 2023-01-18 ]‍. https:doi‍.org10‍.16183j‍.cnki‍.jsjtu‍.2022‍.152‍ . link1

[54] Sabouhi H, Doroudi A, Fotuhi-Firuzabad M, al et‍. Electrical power system resilience assessment: A comprehensive approach [J]‍. IEEE Systems Journal, 2020, 14(2): 2643‒2652‍.

[55] 陶希东‍ . 韧性体系建设: 全球大城市风险化趋势下的应对策略 [J]‍. 南京社会科学 , 2022 10 : 46 ‒ 53 ‍.
Tao X D‍ . Building resilience system: Coping strategies under the trend of global megacities risking [J]‍. Nanjing Journal of Social Sciences , 2022 10 : 46 ‒ 53 ‍.

[56] 张亚超 , 丁志龙 , 谢仕炜 , 等‍ . 面向能源互联网的配电网韧性提升研究综述及展望 [EBOL]‍. 2022-11-10 [ 2023-01-11 ]‍. https:doi‍.org10‍.13335j‍.1000-3673‍.pst‍.2022‍.1695‍ .
Zhang Y C , Ding Z L , Xie S W , al e t ‍. Review and prospect of research on power distribution network resilience enhancement for energy Internet [EBOL]‍. 2022-11-10 ‍[ 2023-01-11 ]‍. https:doi‍.org10‍.13335j‍.1000-3673‍.pst‍.2022‍.1695‍ . link1

[57] 李雪 , 孙霆锴 , 侯恺 , 等‍ . 地震灾害下海岛综合能源系统韧性评估方法研究 [J]‍. 中国电机工程学报 , 2020 , 40 17 : 5476 ‒ 5493 ‍.
Li X , Sun T K , Hou K , al e t ‍. Evaluating resilience of island integrated energy systems with earthquake [J]‍. Proceedings of the CSEE , 2020 , 40 17 : 5476 ‒ 5493 ‍.

[58] 黄文鑫 , 吴军 , 郭子辉 , 等‍ . 极端台风灾害下电网韧性评估及差异化规划 [EBOL]‍. 2022-11-25 [ 2023-01-11 ]‍. http:kns‍.cnki‍.netkcmsdetail32‍.1180‍.TP‍.20221124‍.1110‍.002‍.html‍ .
Huang W X , Wu J , Guo Z H , al e t ‍. Grid resilience assessment and differentiated planning against extreme typhoon disasters [EBOL]‍. 2022-11-25 [ 2023-01-11 ]‍. http:kns‍.cnki‍.netkcmsdetail32‍.1180‍.TP‍.20221124‍.1110‍.002‍.html‍ . link1

[59] 吕彪 , 管心怡 , 高自强‍ . 地铁网络服务韧性评估与最优恢复策略 [J]‍. 交通运输系统工程与信息 , 2021 , 21 5 : 198 ‒ 205 ‍.
Lyu B , Guan X Y , Gao Z Q‍ . Evaluation and optimal recovery strategy of metro network service resilience [J]‍. Journal of Transportation Systems Engineering and Information Technology , 2021 , 21 5 : 198 ‒ 205 ‍.

[60] Kammouh O, Noori A, Cimellaro G, al et‍. Resilience assessment of urban communities [J]‍. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 2019, 5(1): 4019002‍.

[61] 方东平 , 李全旺 , 李楠 , 等‍ . 社区地震安全韧性评估系统及应用示范 [J]‍. 工程力学 , 2020 , 37 10 : 28 ‒ 44 ‍.
Fang D P , Li Q W , Li N , al e t ‍. An evaluation system for community seismic resilience and its application in a typical community [J]‍. Engineering Mechanics , 2020 , 37 10 : 28 ‒ 44 ‍.

[62] 缪惠全 , 王乃玉 , 汪英俊 , 等‍ . 基于灾后恢复过程解析的城市韧性评价体系 [J]‍. 自然灾害学报 , 2021 , 30 1 : 10 ‒ 27 ‍.
Miu H Q , Wang N Y , Wang Y J , al e t ‍. An urban resilience measurement system based on decomposing post-disaster recovery process [J]‍. Journal of Natural Disasters , 2021 , 30 1 : 10 ‒ 27 ‍.

[63] 张家玉 , 杨晓冬‍ . 三度空间理念下城市韧性评价与提升策略研究 [J]‍. 工程管理学报 , 2021 , 35 6 : 55 ‒ 60 ‍.
Zhang J Y , Yang X D‍ . Urban resilience evaluation and promotion strategy: A perspective of trio spaces [J]‍. Journal of Engineering Management , 2021 , 35 6 : 55 ‒ 60 ‍.

[64] Ma S S, Chen B K, Wang Z Y‍. Resilience enhancement strategy for distribution systems under extreme weather events [J]‍. IEEE Transactions on Smart Grid, 2018, 9(2): 1442‒1451‍.

[65] 阮前途 , 梅生伟 , 黄兴德 , 等‍ . 低碳城市电网韧性提升挑战与展望 [J]‍. 中国电机工程学报 , 2022 , 42 8 : 2819 ‒ 2829 ‍.
Ruan Q T , Mei S W , Huang X D , al e t ‍. Challenges and research prospects of resilience enhancement of low-carbon power grid [J]‍. Proceedings of the CSEE , 2022 , 42 8 : 2819 ‒ 2829 ‍.

[66] Jin J G, Tang L C, Sun L J, al et‍. Enhancing metro network resilience via localized integration with bus services [J]‍. Transportation Research Part E: Logistics and Transportation Review, 2014, 63: 17‒30‍.

[67] 唐亮 , 尹小波 , 吴候福 , 等‍ . 电化学储能产业发展对安全标准的需求 [J]‍. 储能科学与技术 , 2022 , 11 8 : 2645 ‒ 2652 ‍.
Tang L , Yin X B , Wu H F‍ , et al . Demand for safety standards in the development of the electrochemical energy storage industry [J]‍. Energy Storage Science and Technology , 2022 , 11 8 : 2645 ‒ 2652 ‍.

[68] 喻航 , 张英 , 徐超航 , 等‍ . 锂电储能系统热失控防控技术研究进展 [J]‍. 储能科学与技术 , 2022 , 11 8 : 2653 ‒ 2663 ‍.
Yu H , Zhang Y , Xu C H , al e t ‍. Research progress of thermal runaway prevention and control technology for lithium battery energy storage systems [J]‍. Energy Storage Science and Technology , 2022 , 11 8 : 2653 ‒ 2663 ‍.

[69] Zhang L L, Long R Y, Chen H‍. Carbon emission reduction potential of urban rail transit in China based on electricity consumption structure‍ resources [J]‍. Resources, Conservation and Recycling, 2019, 142: 113‒121‍.

[70] Li Y, He Q, Luo X, al et‍. Calculation of life-cycle greenhouse gas emissions of urban rail transit systems: A case study of Shanghai metro resources [J]‍. Resources, Conservation and Recycling, 2018, 128: 451‒457‍.

[71] Yin C F, Ji F, Weng X L, al et‍. The optimal plan selection framework of rail transit photovoltaic power station under probabilistic linguistic environment [J]‍. Journal of Cleaner Production, 2021, 328: 129560‍.

[72] 肖勇 , 徐俊‍ . 基于组合赋权与TOPSIS的储能电站电池安全运行风险评价 [J]‍. 储能科学与技术 , 2022 , 11 8 : 2574 ‒ 2584 ‍.
Xiao Y , Xu J‍ . Risk assessment of battery safe operation in energy storage power station based on combination weighting and TOPSIS [J]‍. Energy Storage Science and Technology , 2022 , 11 8 : 2574 ‒ 2584 ‍.

[73] 周喜超 , 王楠 , 徐街明 , 等‍‍ . 磷酸铁锂电池管理技术及安全防护技术研究现状 [J]‍. 热力发电 , 2021 , 50 6 : 9 ‒ 17 ‍.
Zhou X C , Wang N , Xu J M , al e t ‍. Research status of management technology and safety protection technology of lithium iron phosphate battery [J]‍. Thermal Power Generation , 2021 , 50 6 : 9 ‒ 17 ‍.

[74] 曹文炅 , 雷博 , 史尤杰 , 等‍ . 韩国锂离子电池储能电站安全事故的分析及思考 [J]‍. 储能科学与技术 , 2020 , 9 5 : 1539 ‒ 1547 ‍.
Cao W J , Lei B , Shi Y J , al e t ‍. Ponderation over the recent safety accidents of lithium-ion battery energy storage stations in South Korea [J]‍. Energy Storage Science and Technology , 2020 , 9 5 : 1539 ‒ 1547 ‍.

[75] Ditch B, D‍ Vries J. Flammability characterization of lithium-ion batteries in bulk storage [EB/OL]‍. (2014-05-22)[2022-12-15]‍. https://www‍.‍nfpa‍.‍org/-/media/Files/News-and-Research/Fire-statistics-and-reports/Proceedings/High-Challenge-Storage-Protection/Ditch‍.ashx‍. link1

[76] Wang Q S, Li K, Wang Y, al et‍. The efficiency of dodecafluoro-2-methylpentan-3-one on suppressing the lithium-ion battery fire [J]‍. Journal of Electrochemical Energy Conversion and Storage, 2018, 15(4): 4039418‍.

[77] Wang Q S, Shao G Z, Duan Q L, al et‍. The efficiency of heptafluoropropane fire extinguishing agent on suppressing the lithium titanate battery fire [J]‍. Fire Technology, 2016, 52: 387‒396‍.

[78] Meng X D, Yang K, Zhang M J, al et‍. Experimental study on combustion behavior and fire extinguishing of lithium iron phosphate battery [J]‍. Journal of Energy Storage, 2020, 30(8): 101532‍.

[79] Xu J J, Guo P Y, Duan Q L, al et‍. Experimental study of the effectiveness of three kinds of extinguishing agents on suppressing lithium-ion battery fires [J]‍. Applied Thermal Engineering, 2020, 171: 115076‍.

[80] Petra M A, Evegren F, Jandali M, al et‍. Max rosengren lion fire: Extinguishment and mitigation of fires in Li-ion batteries at sea [J]‍. Safety and Transport Safety, 2018 (6): 88‒91‍.

[81] 秦博宇 , 李恒毅 , 张哲 , 等‍ . 地下空间支撑下的电力能源系统: 构想、挑战与展望 [J]‍. 中国电机工程学报 , 2022 , 42 4 : 1321 ‒ 1332 ‍.
Qin B Y , Li H Y , Zhang Z , al e t ‍. Underground space supported electric energy systems: Conceptions, challenges, and prospects [J]‍. Proceedings of the CSEE , 2022 , 42 4 : 1321 ‒ 1332 ‍.

Related Research