Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Strategic Study of CAE >> 2022, Volume 24, Issue 6 doi: 10.15302/J-SSCAE-2022.06.010

Development Strategy for Innovation System of Radiopharmaceuticals in China

1. Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, Sichuan, China;

2. Graduate School of China Academy of Engineering Physics, Beijing 100088, China;

3. China Academy of Engineering Physics, Beijing 100088, China

Funding project:Chinese Academy of Engineering project “Strategic Research on the Development of Nuclear Medical and Health Industry of China” (2021-HZ-03); Nuclear Development Project of the State Administration of Science, Technology and Industry for National Defence (20201192-1) Received: 2022-09-09 Revised: 2022-10-19 Available online: 2022-11-05

Next Previous

Abstract

Nuclear medicine plays an irreplaceable role in the diagnosis, therapy, and prognosis of various diseases. Radiopharmaceuticals are the cornerstone of nuclear medicine; their systematic development could accelerate the innovation and clinical application of radiopharmaceuticals to ensure people's health. In this study, we conducted in-depth research on the literature on the research direction of radiopharmaceuticals, visited over 10 domestic universities, institutes, hospitals, and enterprises related to nuclear medicine, and invited experts to conduct consultation, exchange, and industry discussion, to grasp the development trend and pattern of the research and application of radiopharmaceuticals in a relatively comprehensive way. Based on the analysis of the current status, technical level, and trend of radiopharmaceuticals in China and abroad, the development status of radiopharmaceuticals in China is summarized and the urgent problems faced are identified. This study introduces the contents that need to be focused on from two aspects: the technology research and development (R&D) system and the technology supervision system, and proposes key technological breakthroughs including the study on radiopharmaceutical targets and development of targeted structures; new radio-labelling; automatic, intelligent, and large-scale controllable preparation of radiopharmaceuticals; detection and evaluation of radiation dose of radiopharmaceuticals; and combined diagnosis and therapy of radiopharmaceuticals. The study suggests to (1) encourage the innovative development of interdisciplinary integration with a clinical orientation; (2) accelerate the construction of a technological innovation system for radiopharmaceuticals; and (3) strengthen the construction of a professional team for the R&D of radioactive drugs, so as to promote the overall improvement of nuclear medicine.

References

[ 1 ] 朱华, 杨志‍‍. 肿瘤新型放射性药物的研发与应用 [J ]‍. 中华核医学与分子影像杂志, 2021 , 41 1 0:577‒579‍.

[ 2 ] Zheng R, Zhang S, Zeng H, al et‍. Cancer incidence and mortality in China, 2016 [J]‍. Journal of the National Cancer Center, 2022, 1(2): 1‒9‍.

[ 3 ] 高洁 , 郑小北 , 王红亮 , 等‍ . 放射性治疗药物的发展现状与展望 [J]‍. 同位素 , 2022 , 35 3 : 151 ‒ 163 ‍.

[ 4 ] Hofman M S, Violet J, Hicks R J, al et‍. [(177)Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): A single-centre, single-arm, phase 2 study [J]‍. Lancet Oncology, 2018, 19(6): 825‒833‍.

[ 5 ] Food and Drug Administration‍. FDA-approved drugs [EB/OL]. (2022-03-31)[2022-08-20]‍. https://www‍.accessdata‍.fda‍.gov/scripts/cder/daf/‍. link1

[ 6 ] 田佳乐 , 贾红梅‍ . 99m Tc-放射性药物的现状和展望 [J]‍. 同位素 , 2018 , 31 3 : 143 ‒ 156 ‍.

[ 7 ] Hennrich U, Benesova M‍. [68Ga]Ga-DOTA-TOC: The first FDA-approved 68Ga-radiopharmaceutical for PET imaging [J]‍. Pharmaceuticals (Basel), 2020, 13(3): 38‒50‍.

[ 8 ] Zinzani P L, Tani M, Fanti S, al et‍. A phase 2 trial of fludarabine and mitoxantrone chemotherapy followed by Yttrium-90 ibritumomab tiuxetan for patients with previously untreated, indolent, nonfollicular, non-Hodgkin lymphoma [J]‍. Cancer, 2008, 112(4): 856‒862‍.

[ 9 ] Ciochetto C, Botto B, Passera R, al et‍. Yttrium-90 ibritumomab tiuxetan (Zevalin) followed by BEAM (Z-BEAM) conditioning regimen and autologous stem cell transplantation (ASCT) in relapsed or refractory high-risk B-cell non-Hodgkin lymphoma (NHL): A single institution Italian experience [J]‍. Ann Hematol, 2018, 97(9): 1619‒1626‍.

[10] Hennrich U, Kopka K‍. Lutathera®: The first FDA-and EMA-approved radiopharmaceutical for peptide receptor radionuclide therapy [J]‍. Pharmaceuticals (Basel), 2019, 12(3): 114‒122‍.

[11] Emmett L, Crumbaker M, Ho B, al et‍. Results of a prospective phase 2 pilot trial of 177Lu-PSMA-617 therapy for metastatic castration-resistant prostate cancer including imaging predictors of treatment response and patterns of progression [J]‍. Clinical Genitourinary Cancer, 2019, 17(1): 15‒22‍.

[12] Calais J, Czernin J, Thin P, al et‍. Safety of PSMA-targeted molecular radioligand therapy with 177Lu-PSMA-617: Results from the prospective multicenter phase 2 trial RESIST-PC (NCT03042312) [J]‍. Journal of Nuclear Medicine, 2021, 62(10): 1447‒1456‍.

[13] National Institutes of Health‍. Clinicaltrials database [EB/OL]‍. (2022-03-31)[2022-08-20]‍. https://clinicaltrials‍.gov‍. link1

[14] National Institutes of Health‍. NIH database [EB/OL]‍. (2022-03-31)[2022-08-20]‍. https://www‍.nih‍.gov‍. link1

[15] Ulaner G, Sobol N, O´Donoghue J, al et‍. Synthesis, preclinical analysis, and first-in-human phase I imaging of 89Zr-DFO-daratumumab for CD38 targeted imaging of myeloma [J]‍. Clinical Lymphoma Myeloma and Leukemia, 2019, 19(10): 1‒10‍.

[16] Ranjbar H, Bahrami-Samani A, Beiki D, al et‍. Evaluation of 153Sm/177Lu-EDTMP mixture in wild-type rodents as a novel combined palliative treatment of bone pain agent [J]‍. Journal of Radioanalytical and Nuclear Chemistry, 2014, 303: 71‒79‍.

[17] Atallah E L, Orozco J J, Craig M, al et‍. A phase 2 study of Actinium-225 (225Ac)-Lintuzumab in older patients with untreated Acute Myeloid Leukemia (AML)-Interim analysis of 1‍.5 µci/Kg/dose [J]‍. Blood, 2018, 132(1): 1457‒1467‍.

[18] Stallons T A R, Saidi A, Tworowska I, al et‍. Preclinical investigation of 212Pb-DOTAMTATE for peptide receptor radionuclide therapy in a neuroendocrine tumor model [J]‍. Molecular Cancer Therapeutics, 2019, 18(5): 1012‒1021‍.

[19] Meredith R, Torgue J, Shen S, al et‍. Dose escalation and dosimetry of first-in-human alpha radioimmunotherapy with 212Pb-TCMC-trastuzumab [J]‍. Journal of Nuclear Medicine, 2014, 55(10): 1636‒1642‍.

[20] Schneider H, Deweid L, Avrutina O, al et‍. Recent progress in transglutaminase-mediated assembly of antibody-drug conjugates [J]‍. Analytical Biochemistry, 2020, 595: 113615‒113625‍.

[21] Morais M, Ma M T‍. Site-specific chelator-antibody conjugation for PET and SPECT imaging with radiometals [J]‍. Drug Discovery Today Technologies, 2018, 30: 91‒104‍.

[22] Sadiki A, Kercher E M, Lu H, al et‍. Site-specific bioconjugation and convergent click chemistry enhances antibody-chromophore conjugate binding efficiency [J]‍. Photochemistry and Photobiology, 2020, 96(3): 596‒603‍.

[23] Roberts J T, Patel K R, W‍ Barb A. Site-specific N-glycan analysis of antibody-binding Fc γ receptors from primary human monocytes [J]‍. Molecular & Cellular Proteomics, 2020, 19(2): 362‒374‍.

[24] Li T, Li C, Quan D N, al et‍. Site-specific immobilization of endoglycosidases for streamlined chemoenzymatic glycan remodeling of antibodies [J]‍. Carbohydrate Research, 2018, 458‒459: 77‒84‍.

[25] Hwang D, Rader C‍. Site-specific antibody-drug conjugates in triple variable domain fab format [J]‍. Biomolecules, 2020, 10(5): 764‒776‍.

[26] Yamada K, Ito Y‍. Recent chemical approaches for site-specific conjugation of native antibodies: Technologies toward next-generation antibody-drug conjugates [J]‍. Chembiochem, 2019, 20(21): 2729‒2737‍.

[27] Agarwal P, R‍ Bertozzi C. Site-specific antibody-drug conjugates: The nexus of biciorthogonal chemistry, protein engineering, and drug development [J]‍. Bioconjugate Chemistry, 2015, 26(2): 176‒192‍.

[28] Zhou Q, Stefano J E, Manning C, al et‍. Site-specific antibody-drug conjugation through glycoengineering [J]‍. Bioconjugate Chemistry, 2014, 25(3): 510‒520‍.

[29] Nisonoff A, Wissler F C, N‍ Lipman L. Properties of the major component of a peptic digest of rabbit antibody [J]‍. Science, 1960, 132(3441): 1770‒1771‍.

[30] 张迪 , 陈虞梅 , 赵海涛 , 等‍ . 免疫PET显像在肿瘤诊疗中的研究进展 [J]‍. 中华核医学与分子影像杂志 , 2022 , 42 2 : 113 ‒ 117 ‍.

[31] Labrijn A F, Janmaat M L, Reichert J M, al et‍. Bispecific antibodies: A mechanistic review of the pipeline [J]‍. Nature Reviews Drug Discovery, 2019, 18(8): 585‒608‍.

[32] Frost S H, Frayo S L, Miller B W, al et‍. Comparative efficacy of 177Lu and 90Y for anti-CD20 pretargeted radioimmunotherapy in murine lymphoma xenograft models [J]‍. PLoS One, 2015, 10(3): 1‒16‍.

[33] Meyer J P, Tully K M, Jackson J, al et‍. Bioorthogonal masking of circulating antibody-TCO groups using tetrazine-functionalized dextran polymers [J]‍. Bioconjugate Chemistry, 2018, 29(2): 538‒545‍.

[34] Poty S, Carter L M, Mandleywala K, al et‍. Leveraging bioorthogonal click chemistry to improve 225Ac-radioimmunotherapy of pancreatic ductal adenocarcinoma [J]‍. Clinical Cancer Research, 2019, 25(2): 868‒880‍.

[35] Schoffelen R, Woliner-van der Weg W, Visser E P, al et‍. Predictive patient-specific dosimetry and individualized dosing of pretargeted radioimmunotherapy in patients with advanced colorectal cancer [J]‍. European Journal of Nuclear Medicine and Molecular Imaging, 2014, 41(8): 1593‒602‍.

[36] 彭述明 , 杨宇川 , 谢翔 , 等‍ . 我国堆照医用同位素生产及应用现状与展望 [J]‍. 科学通报 , 2020 , 65 32 : 3526 ‒ 3537 ‍.

[37] 国家药品监督管理局 . 数据查询 [EBOL]. 2022-10-10 [ 2022-10-20 ]. https:www.nmpa.gov.cndatasearch .

[38] 汪静‍ . FAPI有望开创核素靶向诊疗的新时代 [J]‍. 中华核医学与分子影像杂志 , 2021 , 41 12 : 705 ‒ 708 ‍.

[39] Mao Y, Du S, Ba J, al et‍. Using dynamic 99mTc-GSA SPECT/CT fusion images for hepatectomy planning and postoperative liver failure prediction [J]‍. Annals of Surgical Oncology, 2015, 22(4): 1301‒1307‍.

[40] Li N, Wang X, Lin B, al et‍. Clinical evaluation of 99mTc-rituximab for sentinel lymph node mapping in breast cancer patients [J]‍. Journal of Nuclear Medicine, 2016, 57(8): 1214‒1220‍.

[41] Shao G, Gu W, Guo M, al et‍. Clinical study of 99mTc-3P-RGD2 peptide imaging in osteolytic bone metastasis [J]‍. Oncotarget, 2017, 8(43): 75587‒75596‍.

[42] 施婧琦 , 武新宇 , 李博 , 等‍ . 定量 99m Tc-HYNIC-PSMA SPECTCT诊断前列腺癌的价值 [J]‍. 中华核医学与分子影像杂志 , 2022 , 42 3 : 149 ‒ 153 ‍.

[43] Zhang J, Lang L, Zhu Z, al et‍. Clinical translation of an Albumin-binding PET radiotracer 68Ga-NEB [J]‍. Journal of Nuclear Medicine, 2015, 56(10): 1609‒1614‍.

[44] Hu J, Li H, Sui Y, al et‍. Current status and future perspective of radiopharmaceuticals in China [J]‍. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49: 2514‒2530‍.

[45] Wang Q, Wang Y, Ding J, al et‍. A bioorthogonal system reveals antitumour immune function of pyroptosis [J]‍. Nature, 2020, 579 (7799): 421‒426‍.

[46] 王正 , 徐建锋 , 蔡玉婷 , 等‍ . 中国放射性药物的现状及发展趋势 [J]‍. 中国食品药品监管 , 2018 7 : 44 ‒ 49 ‍.

[47] Zhang X, Ruan Q, Jiang Y, al et‍. Evaluation of 99mTc-CN5DG as a broad-spectrum SPECT probe for tumor imaging [J]‍. Translational Oncology, 2021, 14(1): 100966‒100972‍.

Related Research