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Abstract—Random number generators have an important role in 

many engineering applications. In this work, a robust chaotic map 

based random number generation algorithm is studied for Monte 

Carlo simulations.  For use in simulation based solutions, outputs of 

the chaotic systems must fit the standard uniform distribution on 

U(0,1) for accurate solutions. Some robust chaotic maps appear to 

be good candidates for simulation based solutions due to their robust 

and uniform outputs. The performance of the proposed chaotic 

random number generator is evaluated through different statistical 

methods, and its randomness level and suitability are analyzed with 

the statistical and visual tests. The effectiveness of the approach is 

validated with a Monte Carlo solution of a stochastic process. 
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I. INTRODUCTION 

IMULATIONS usually need a random number source 

because many statistical, mathematical and physical 

methods rely on the random samples or stochastic processes. 

Simulation in engineering and natural sciences is extensively 

used for working on biological processes, reliability analyses, 

physical processes and particle transports. Randomness is 

described by a nondeterministic process and statistically 

independent of the others. The usages of random numbers are 

not limited to simulations such that many science and 

engineering fields need random numbers for a variety of 

objectives including data encryption, gambling, data 

sampling and modeling. On the other hand, the usage of 

random numbers in simulation and cryptographic 

applications requires somewhat different features. It is well-

known that cryptosystems and coding need unpredictable 

random bits, while the applications of simulations require 

uniform distribution of the random numbers. To meet 

application based requirements, today true and pseudo 

random number generators (RNGs) are used. True RNGs, 

also known as hardware-based generator, operate by 

measuring unpredictable natural processes such as thermal 

noise [1], radioactive decay [2] and atmospheric events [3]. 

The RNGs are often appropriate to cryptosystems. Pseudo 

RNGs, also known as software-based generators, use 

deterministic processes to generate a series of outputs from an 

initial seed state.  Today, the random numbers are directly 

generated by using the computers. In reality, the computer 

algorithms use mathematical formulas or pre-calculated 
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tables to generate sequences of pseudo-random numbers that 

seem random. The most successful pseudo random number 

algorithms are based on recursive or linear congruential 

generators and feedback shift registers [4], [5]. Pseudo RNGs 

are much more cost effective and much faster than the true 

RNGs, but the randomness level of the pseudo-random 

numbers depends on the level of randomness of the seed. In 

addition, all the computer based random numbers are 

typically periodic numbers with long periods such that the 

periodicity can be ignored in many applications. 

Alternatively, chaos based random number algorithms have 

been studied in recent years by utilizing the aperiodic feature 

of the chaotic systems. 

The utilization of the chaos based cryptosystems has been 

getting a great deal of attention in the last decade. In such 

applications the studies have been focused on chaotic random 

bit generations. On the other hand, the usages of the chaos for 

simulation based applications have been researched by few 

studies. The usage of random numbers in simulations is 

different than the cryptographic applications because the 

simulations (e.g., Monte Carlo) need fast random number 

generators and a uniform distribution of random numbers. It 

is shown in [6] that Chebyshev chaotic maps based Monte 

Carlo simulations can yield a superefficient solution for some 

specific integral problems so that its approximation error 

decreases as fast as 1/N2 instead of the conventional 1/N.  In 

[7], it is shown that uniform random distribution can be 

obtained from logistic maps with appropriate transformations 

and then can be used in Monte Carlo solutions. These studies 

show evidence that chaos can be used in simulations, but they 

are utilized from smooth chaotic maps which exhibit periodic 

windows. In this work, a robust chaotic map whose output 

sequences fit uniformly distributed numbers over the range 

U(0,1) is introduced for directly use in random number based 

simulations. The robust chaotic map does not have any 

periodic windows for a wide range of parameter variations. 

The goal in the usage of robust chaotic maps is to get simple, 

fast, robust and efficient chaos based solutions for practical 

Monte Carlo simulations. 

    Monte Carlo simulations used in many different sciences 

and engineering disciplines compute the results based on the 

repeated random sampling and statistical analysis. For a 

sequence of N independent random observations, a volume 

integral of a function h is given by 
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where μ is the sample average defined by 
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and σ2 is the variance given by 
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    For independent uniform random samples zk, the variance 

of the approximation decreases at a rate 1/N. The uniform 

random numbers can be obtained from a discrete-time chaotic 

system given by 

                       1 ( , )k kz g r z                                          (4)  (4) 

where r is a real-valued system parameter and (.)g  is a 

piecewise linear function, : R Rg  . The existence of chaos 

in the system (4) can be shown with the positive Lyapunov 

exponents and bifurcation diagrams. If the Lyapunov 

exponent in the chaotic region is always positive, then the 

chaotic behavior without any periodic windows in that region 

is called robust chaos. In this work, a robust chaotic map 

based random number generation algorithm will be 

introduced for use in Monte Carlo simulations.  

II.  CHAOTIC RANDOM NUMBER GENERATION 

   The uniform distribution has a critical role in the random 

number generation. The uniform distribution has random 

variable Z restricted to a finite interval [a,b], represented by 

U(a,b), and a probability density function q(z) given by 
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                         (5)  (5) 

    If we have a distribution denoted by U(0,1), then it is 

called a standard uniform distribution. If z is a value sampled 

from the uniform distribution, then the 

value ( ) / ( )z a b a   follows the standard uniform 

distribution, U(0,1).  

    For use as an RNG, only a small number of chaotic systems 

can be a good candidate since the uniform distribution is the 

main concern. To use chaotic sources as RNGs for Monte 

Carlo simulations, two main features should be satisfied: (i) 

the (scaled) output of the chaotic map must fit well to the 

standard uniform distribution, and (ii) the chaotic RNG must 

be fast enough not to consume too much simulation time. By 

considering these two conditions, the robust chaotic maps 

seem to be a good candidate for RNGs. A robust chaotic 

system is described with no periodic windows in the chaotic 

attractor for its parameter space [8]. The robust chaos can 

only occur in piecewise smooth or discontinuous maps whose 

Lyapunov exponents remain positive throughout the chaotic 

parameter range. Such chaotic maps including the piece-wise 

map [9], tent map  [10], skew-tent map [11] and binary shift 

map [12] can be good candidates for uniform random number 

generation in the form of U(0,1). It is critical to have 

simplicity in the RNG algorithms because the least solution 

time and memory space are needed in the realizations. Hence, 

the following chaotic map is proposed as a chaotic RNG due 

to its simplicity and robustness:  
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where the parameter r>0. The discrete system (6) has three 

fixed points, (1 / ( 1), 0, 1 / ( 1))ez r r    , such that 

nonzero fixed points are stable since ( )eg z z r    . This 

map has only two fixed points in the uniform distribution 

range which can be a significant advantage when the initial 

condition is selected randomly. The existence of chaos in the 

system for 1r   can be demonstrated with positive Lyapunov 

exponents and bifurcation diagrams. For various parameter 

values of the new chaotic map (6), bifurcation diagrams 

exhibiting a route to chaos are shown in Fig. 1 for r versus zk. 

It is seen from the bifurcation diagram that the chaotic map 

do not have any periodic orbit for a wide range of system 

parameter, 1.4 2r  .  

 

 

Fig. 1:  Bifurcation diagram for the chaotic map (6). 
 

   The Lyapunov exponent of the chaotic map is calculated as  

                         ln r                                             (7)  (7) 

    Therefore, when 1r  , the Lyapunov exponent is always 

positive, which means that the chaotic map is robust (i.e., 

robust chaos). The positive Lyapunov exponent is critical for 

existence of the chaos and a very useful measure of the 

randomness, given by the Kolmogorov–Sinai (KS) entropy 

[13]. The KS entropy, in general, is calculated by the sum of 

the positive Lyapunov exponents without prior knowledge of 

the source statistics. Thus, the maximum achievable entropy 

from the chaotic map (6) is obtained as  ln 0.693r  . 

For random number generation from chaotic map (6), the 

system parameters are selected as 1.9999r  , and the chaotic 

outputs are scaled to the U(0,1) with k ku x . Since the 
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quality of the uniform distribution is critical for Monte Carlo 

simulations, the randomness assessments of the generated 

random numbers can be conducted with the visual and test 

statistics based approaches. It is well-known that the quality 

of the random number generators cannot only be determined 

by the statistical tests, but they are required to get enough 

idea about the randomness level of the observations. Firstly, 

the random number generator is evaluated with visual 

methods which provide a nice and quick way to get a rough 

consequence about the generator's performance. Four visual 

techniques are used in this work: the run sequence plot, 

histogram, lag plot and autocorrelation plot. Figure 2a shows 

the run sequence obtained from the chaotic map (6). It shows 

a random pattern without any periodic, upward or downward 

trends. The normalized histogram plot of the chaotic RNG 

output is provided in Fig. 2b for 100 categories. The 

histogram verifies that the data follows the feature of standard 

uniform distribution, where there is almost the same number 

of observations in each category. Figure 3a illustrates the lag 

plot of the data, which is an effective method for detecting 

outliers. Existence of some significant outliers is an 

indication of problems in the random number generator. It is 

clear that there are no outliers in the figure. Since the chaotic 

map is one-dimensional, the data points are spread evenly 

across the symmetric lines (i.e., a good indication of 

uniformity). The last visual method shown in Fig. 3b is the 

autocorrelation plot of the chaotic data. It displays that the 

data is random without any repeating patterns and have 

property of independence because all the values are in control 

and all the correlations are small (i.e., inside the standard 

bounds ±0.0063). 

 
 

 
Fig. 2:  Run sequence and histogram plots 

 

 

Fig. 3: Lag plot (uk+1 vs uk) and autocorrelation plot 

 

The chaotic random numbers are also evaluated for 

randomness with some qualitative statistical tests. The 

statistical tests must be simple and easy enough to implement, 

and be suitable for analyzing different trends and random 

numbers. For these reasons, four tests which are commonly 

used in literature are selected: the chi-square goodness-of-fit 

test, runs test above-below the median, reverse arrangements 

test and overlapping sums test. The chi-square goodness-of-

fit test is a test of distributional accuracy and widely used in 

the analysis of random numbers. This test is used to measure 

how closely the generated random numbers follow the 

uniform distribution. The runs test above-below the median is 

a powerful method in detecting fluctuating trends in the 

observations and does not need any assumptions about the 

observations (i.e., a distribution-free test). If a fluctuating 

trend exists, then it would suggest non-randomness. The 

reverse arrangements test is also a powerful test in detecting 

bias or monotonic trends in the observations [14]. The test 

provides highly accurate test results about randomness. The 

overlapping sums test is based on the empirical chi-square 

test, but it is difficult to use this test on a daily basis. 
 

TABLE I: STATISTICAL TEST RESULTS FOR THE PROPOSED CHAOTIC RNG. 

Tests Critical values Statistics Results 

Runs test above / below the 

median 
|z|<1.93 0.1970 success 

Chi-square goodness-of-fit 

test 
χ

2
0.05, 7 < 14.067 0.80883 success 

Overlapping sums test χ
2

0.05, 9 < 16.92 5.642 Success 

Reverse arrangements test 2145<h<2804 2498 success 
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The visual and test statistics based analysis results show 

that the chaotic RNG yields a good sequence of random 

numbers for use in simulation studies. The following 

application demonstrates the effectiveness of the method for 

Monte Carlo simulations. 

III. APPLICATION TO A MARKOV JUMP PROCESS 

Consider a stochastic reaction process in a volume V 

given by [15] 

   
3 51
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, 2 , 2
p pp

p p p
X Y X Z W X X          (8)     (8) 

    The stochastic model of the process is described with a 

four-dimensional Markov jump process with the following 

transition rates [4], [16] 
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where (.)Vq  is the probability function, 1 6,...,p p  are 

reaction rates and V is the volume. While the process is 

stochastic, the deterministic model of this process can be used 

for fast evaluations as follows 
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    (10)  (10) 

The solution of the deterministic model can be obtained 

from numerical methods, e.g. Runge-Kutta 4th order method. 

The stochastic simulation of the Markov jump process is also 

straightforward for a finite volume and a finite time-step. 

Figure 4 shows the convergence of the stochastic process to 

the deterministic limit with increasing volume (V=1 and 

V=10). For instance, the solution is indistinguishable from 

the deterministic results if we choose V=100. It is clear that 

the stochastic solution approaches to the deterministic results 

while the volume increase also needs a much longer solution 

time and a much larger memory space. Figure 5 displays time 

responses of the process states with deterministic limits for 

the volume V=1. It is seen that the Markov jump process 

approaches steady-state response of the process as time 

increases. It is clear that the stochastic solutions are 

compatible with the deterministic results, and thus, the results 

obtained with the use of chaotic RNG are quite accurate and 

effective.  

 

 
Fig. 4:  Deterministic (red line) and stochastic solutions for the 

state x for a given volume, (a) V=1, (b) V=10 
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Fig. 5:  Deterministic (red line) and stochastic (blue dots) 

solutions for all states for V=1 

IV. CONCLUSION 

The practical random numbers are directly generated by 

using the computer algorithms including linear congruential 

generators and feedback shift registers. All the computer 

based random numbers have periodic behaviors with long 

periods in which the periodicity is usually ignored in many 

applications. On the other hand, random numbers can also be 

generated from robust chaotic maps by utilizing the aperiodic, 

deterministic, ergodic and mixing feature of the chaotic 

dynamics.  

This work provides a robust chaotic map based random 

number generation and its application to Monte Carlo 

simulations. The chaotic map output fits standard uniformly 

distributed numbers over the range U(0,1) and does not have 

any periodic windows for a wide range of control parameters. 

In general, chaotic RNGs are similar to the conventional 

recursive random number algorithms, but they yield aperiodic 

results with very simple equations and eliminate the length of 

the conventional RNG algorithms, e.g., Mersenne Twister 

[17]. In addition, the chaotic RNGs are able to provide fast, 

high-quality and practical solutions with easy 

implementations in basic embedded systems or 

microprocessors. This work shows that the robust chaotic 

maps are able to provide simple, fast and efficient chaos 

based solutions for practical applications.  
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