Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) May 20, 2021

Extended visible light driven photocatalytic hydrogen generation by electron induction from g-C3N4 nanosheets to ZnO through the proper heterojunction

  • Amir Zada ORCID logo EMAIL logo , Muhammad Khan , Zahid Hussain , Muhammad Ishaq Ali Shah , Muhammad Ateeq , Mohib Ullah , Nauman Ali , Shabana Shaheen , Humaira Yasmeen , Syed Niaz Ali Shah and Alei Dang EMAIL logo

Abstract

The alarming energy crises has forced the scientific community to work for sustainable energy modules to meet energy requirements. As for this, ZnO/g-C3N4 nanocomposites with proper heterojunction were fabricated by coupling a proper amount of ZnO with 2D graphitic carbon nitride (g-C3N4) nanosheets and the obtained nanocomposites were applied for photocatalytic hydrogen generation from water under visible light illumination (λ > 420 nm). The morphologies and the hydrogen generation performance of fabricated photocatalysts were characterized in detail. Results showed that the optimized 5ZnO/g-C3N4 nanocomposite produced 70 µmol hydrogen gas in 1 h compare to 8 µmol by pure g-C3N4 under identical illumination conditions in the presence of methanol without the addition of cocatalyst. The much improved photoactivities of the nanocomposites were attributed to the enhanced charge separation through the heterojunction as confirmed from photoluminescence study, capacity of the fabricated samples for •OH radical generation and steady state surface photovoltage spectroscopic (SS-SPS) measurements. We believe that this work would help to fabricate low cost and effective visible light driven photocatalyst for energy production.


Corresponding authors: Amir Zada, Department of Chemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; and Alei Dang, Shaanxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China, E-mail: (A. Zada), (A. Dang)

Funding source: Natural Science Foundation of China

Award Identifier / Grant number: 51802267

Funding source: Key Industrial Chain Project of Shaanxi Province

Award Identifier / Grant number: 2019ZDLGY16-06

Funding source: Fundamental Research Funds for the Central Universities

Award Identifier / Grant number: 3102019TS0411

Funding source: Science and Technology Plan Project from Xi’an

Award Identifier / Grant number: 2019218314GXRC019CG020-GXYD19.5

Funding source: China Postdoctoral Science Foundation

Award Identifier / Grant number: 2020M673475

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was supported by Natural Science Foundation of China (51802267), the Key Industrial Chain Project of Shaanxi Province (2019ZDLGY16-06), the Fundamental Research Funds for the Central Universities (3102019TS0411), the Science and Technology Plan Project from Xi’an (2019218314GXRC019CG020-GXYD19.5) and China Postdoctoral Science Foundation (2020M673475).

  3. Conflict of interest statement: The authors declare no competing interests statement.

References

1. Heimann, M., Ortega, K. F., Behrens, M. Z. Phys. Chem. 2019, 234, 1185; https://doi.org/10.1515/zpch-2019-1477.Search in Google Scholar

2. Wang, Y., Song, J. Z. Phys. Chem. 2019, 234, 153; https://doi.org/10.1515/zpch-2019-1392.Search in Google Scholar

3. Shah, S. J., Khan, A., Naz, N., Ismail, A., Zahid, M., Khan, M. S., Awais, Ismail, M., Bakhtiar, S. H., Khan, I., Ahmad, B., Ali, N., Zada, A., Ali, S. Spectrochim. Acta Mol. Biomol. Spectrosc. 2020, 236, 118314; https://doi.org/10.1016/j.saa.2020.118314.Search in Google Scholar PubMed

4. Bibi, I., Hussain, S., Majid, F., Kamal, S., Ata, S., Sultan, M., Imran Din, M., Iqbal, M., Nazir, A. Z. Phys. Chem. 2019, 233, 1431–1445; https://doi.org/10.1515/zpch-2018-1162.Search in Google Scholar

5. Yang, F., Chua, X., Sun, J., Zhang, Y., Li, Z., Liu, H., Bai, L., Qu, Y., Jing, L. Chin. Chem. Lett. 2020, 31, 2784–2788; https://doi.org/10.1016/j.cclet.2020.07.033.Search in Google Scholar

6. Raziq, F., Qu, Y., Humayun, M., Zada, A., Yu, H., Jing, L. Appl. Catal. B Environ. 2017, 201, 486–494; https://doi.org/10.1016/j.apcatb.2016.08.057.Search in Google Scholar

7. Ali, N., Awais, Kamal, T., Ul-Islam, M., Khan, A., Shah, S. J., Zada, A. Int. J. Biol. Macromol. 2018, 111, 832–838; https://doi.org/10.1016/j.ijbiomac.2018.01.092.Search in Google Scholar PubMed

8. Madani, S. S., Yangjeh, A. H., Khaneghah, S. A., Chand, H., Krishnan, V., Zada, A. J. Taiwan Inst. Chem. Eng. 2021, 119, 177–186; https://doi.org/10.1016/j.jtice.2021.01.020.Search in Google Scholar

9. Ali, A., Hussain, Z., Arain, M. B., Shah, N., Mohammad Khan, K., Gulab, H., Zada, A. Spectrochim. Acta Mol. Biomol. Spectrosc. 2016, 153, 374–378; https://doi.org/10.1016/j.saa.2015.07.104.Search in Google Scholar PubMed

10. Khan, M., Zada, A., Hayat, A., Ali, T., Uddin, I., Hayat, A., Khan, M., Ullah, A., Hussain, A., Li, T., Zhao, T. Int. J. Energy Res. 2021, 1–32; https://doi.org/10.1002/er.6747.Search in Google Scholar

11. Li, F., Wangyang, P., Zada, A., Humayun, M., Wang, B., Qu, Y. Mater. Res. Bull. 2016, 84, 99–104; https://doi.org/10.1016/j.materresbull.2016.07.032.Search in Google Scholar

12. Khan, W. A., Arain, M. B., Bibi, H., Tuzen, M., Shah, N., Zada, A. Z. Phys. Chem. 2020; https://doi.org/10.1515/zpch-2020-1761.Search in Google Scholar

13. Zada, A., Humayun, M., Raziq, F., Zhang, X., Qu, Y., Bai, L., Qin, C., Jing, L., Fu, H. Adv. Energy Mater. 2016, 6, 1601190; https://doi.org/10.1002/aenm.201601190.Search in Google Scholar

14. Qi, K., Lv, W., Khan, I., Liu, S. Chin. J. Catal. 2020, 41, 114–121; https://doi.org/10.1016/S1872-2067(19)63459-5.Search in Google Scholar

15. Wang, J., Qin, C., Wang, H., Chu, M., Zada, A., Zhang, X., Li, J., Raziq, F., Qu, Y., Jing, L. Appl. Catal. B Environ. 2018, 221, 459–466; https://doi.org/10.1016/j.apcatb.2017.09.042.Search in Google Scholar

16. Ali, N., Zada, A., Zahid, M., Ismail, A., Rafiq, M., Riaz, A., Khan, A. J. Chin. Chem. Soc. 2019, 66, 402–408; https://doi.org/10.1002/jccs.201800213.Search in Google Scholar

17. Hejazi, S., Altomare, M., Schmuki, P. Z. Phys. Chem. 2019, 234, 615–631; https://doi.org/10.1515/zpch-2019-1479.Search in Google Scholar

18. Neuberger, F., Baranyai, J., Schmidt, T., Cottre, T., Kaiser, B., Jaegermann, W., Schäfer, R. Z. Phys. Chem. 2019, 234, 847–865; https://doi.org/10.1515/zpch-2019-1424.Search in Google Scholar

19. Kumari, S., Khare, C., Xi, F., Nowak, M., Sliozberg, K., Gutkowski, R., Bassi, P. S., Fiechter, S., Schuhmann, W., Ludwig, A. Z. Phys. Chem. 2019, 234, 867–885; https://doi.org/10.1515/zpch-2019-1462.Search in Google Scholar

20. Krysiak, O. A., Cichowicz, G., Conzuelo, F., Cyranski, M. K., Augustynski, J. Z. Phys. Chem. 2019, 234, 633–643; https://doi.org/10.1515/zpch-2019-1431.Search in Google Scholar

21. Zada, A., Muhammad, P., Ahmad, W., Hussain, Z., Ali, S., Khan, M., Khan, Q., Maqbool, M. Adv. Funct. Mater. 2020, 30, 1906744; https://doi.org/10.1002/adfm.201906744.Search in Google Scholar

22. Ali, W., Ullah, H., Zada, A., Muhammad, W., Ali, S., Shaheen, S., Alamgir, M. K., Ansar, M. Z., Ullah Khan, Z., Bilal, H., Yap, P. S. Sci. Total Environ. 2020, 746, 141291; https://doi.org/10.1016/j.scitotenv.2020.141291.Search in Google Scholar PubMed

23. Ulpe, A. C., Bauerfeind, K. C. L., Granone, L. I., Arimi, A., Megatif, L., Dillert, R., Warfsmann, S., Taffa, D. H., Wark, M., Bahnemann, D. W., Bredow, T. Z. Phys. Chem. 2019, 234, 719–776; https://doi.org/10.1515/zpch-2019-1449.Search in Google Scholar

24. Khan, M., Hayat, A., Mane, S. K. B., Li, T., Shaishta, N., Alei, D., Zhao, T. K., Ullah, A., Zada, A., Rehman, A. U., Khan, W. U. Int. J. Hydrogen Energy 2020, 45, 29070–29081; https://doi.org/10.1016/j.ijhydene.2020.07.274.Search in Google Scholar

25. Qu, Y., Sun, N., Humayun, M., Zada, A., Xie, Y., Tang, J., Jing, L., Fu, H. Sustain. Energy Fuels 2018, 2, 549–552; https://doi.org/10.1039/C7SE00610A.Search in Google Scholar

26. Xu, B., Zada, A., Wang, G., Qu, Y. Sustain. Energy Fuels 2019, 3, 3363–3369; https://doi.org/10.1039/C9SE00409B.Search in Google Scholar

27. Qi, K., Liu, S., Qiu, M. Chin. J. Catal. 2018, 39, 867–875; https://doi.org/10.1016/S1872-2067(17)62999-1.Search in Google Scholar

28. Saeed, M., Ibrahim, M., Muneer, M., Akram, N., Usman, M., Maqbool, I., Adeel, M., Nisar, A. Z. Phys. Chem. 2019, 235, 225–237; https://doi.org/10.1515/zpch-2019-1536.Search in Google Scholar

29. Ali, D. A., El-Katori, E. E., Kasim, E. A. Z. Phys. Chem. 2019, 235, 239–263; https://doi.org/10.1515/zpch-2019-1518.Search in Google Scholar

30. Zhang, Z., Gao, Y., Li, P., Qu, B., Mu, Z., Liu, Y., Qu, Y., Kong, D., Chang, Q., Jing, L. Chin. Chem. Lett. 2020, 31, 2725–2729; https://doi.org/10.1016/j.cclet.2020.05.024.Search in Google Scholar

31. Cottre, T., Welter, K., Ronge, E., Smirnov, V., Finger, F., Jooss, C., Kaiser, B., Jaegermann, W. Z. Phys. Chem. 2020, 234, 1155–1169; https://doi.org/10.1515/zpch-2019-1483.Search in Google Scholar

32. Raziq, F., Li, C., Humayun, M., Qu, Y., Zada, A., Yu, H., Jing, L. Mater. Res. Bull. 2015, 70, 494–499; https://doi.org/10.1016/j.materresbull.2015.05.018.Search in Google Scholar

33. Qi, K., Li, Y., Xie, Y., Liu, S., Zheng, K., Chen, Z., Wang, R. Front. Chem. 2019, 7, 91; https://doi.org/10.3389/fchem.2019.00091.Search in Google Scholar PubMed PubMed Central

34. Chu, X., Qu, Y., Zada, A., Bai, L., Li, Z., Yang, F., Zhao, L., Zhang, G., Sun, X., Yang, Z., Jing, L. Adv. Sci. 2020, 7, 2001543; https://doi.org/10.1002/advs.202001543.Search in Google Scholar PubMed PubMed Central

35. Qi, K., Xie, Y., Wang, R., Liu, S., Zhao, Z. Appl. Surf. Sci. 2019, 466, 847–853; https://doi.org/10.1016/j.apsusc.2018.10.037.Search in Google Scholar

36. Hamid, A., Khan, M., Hayat, A., Raza, J., Zada, A., Ullah, A., Raziq, F., Li, T., Hussain, F. Spectrochim. Acta Mol. Biomol. Spectrosc. 2020, 235, 118303; https://doi.org/10.1016/j.saa.2020.118303.Search in Google Scholar PubMed

37. Khan, M., Hamid, A., Tiehu, L., Zada, A., Attique, F., Ahmad, N., Ullah, A., Hayat, A., Mahmood, I., Hussain, A., Khan, Y., Ahmad, I., Ali, A., Zhao, T. K. Diam. Relat. Mater. 2020, 107, 107897; https://doi.org/10.1016/j.diamond.2020.107897.Search in Google Scholar

38. Zhao, X., Zhang, J., Wang, B., Zada, A., Humayun, M. Materials 2015, 8, 2043–2053; https://doi.org/10.3390/ma8052043.Search in Google Scholar

39. Xu, Y., Jiang, S., Yin, W., Sheng, W., Wu, L., Nie, G., Ao, Z. Appl. Surf. Sci. 2020, 501, 144199; https://doi.org/10.1016/j.apsusc.2019.144199.Search in Google Scholar

40. Ullah, M., Nazir, R., Khan, M., Khan, W., Shah, M., Afridi, S. G., Zada, A. Soil Water Res. 2020, 15, 30–37; https://doi.org/10.17221/212/2018-SWR.Search in Google Scholar

41. Nazir, R., Khan, M., Rehman, R. U., Shujah, S., Khan, M., Ullah, M., Zada, A., Mahmood, N., Ahmad, I. Soil Water Res. 2020, 15, 166–172; https://doi.org/10.17221/59/2019-SWR.Search in Google Scholar

42. Ali, A., Hussain, Z., Zahid, M., Qamar, L., Zada, A., Arain, M. B., Salman, S. M., Mohammed Khan, K. Int. J. Environ. Anal. Chem. 2020, 1–16; https://doi.org/10.1080/03067319.2020.1760860.Search in Google Scholar

43. Raziq, F., Qu, Y., Zhang, X., Humayun, M., Wu, J., Zada, A., Yu, H., Sun, X., Jing, L. J. Phys. Chem. C 2016, 120, 98–107; https://doi.org/10.1021/acs.jpcc.5b10313.Search in Google Scholar

44. Qi, K., Xing, X., Zada, A., Li, M., Wang, Q., Liu, S., Lin, H., Wang, G. Ceram. Int. 2020, 46, 1494–1502; https://doi.org/10.1016/j.ceramint.2019.09.116.Search in Google Scholar

45. Yasmeen, H., Zada, A., Liu, S. J. Photochem. Photobiol. Chem. 2019, 380, 111867; https://doi.org/10.1016/j.jphotochem.2019.111867.Search in Google Scholar

46. Liu, C., Raziq, F., Li, Z., Qu, Y., Zada, A., Jing, L. Chin. J. Catal. 2017, 38, 1072–1078; https://doi.org/10.1016/S1872-2067(17)62850-X.Search in Google Scholar

47. Zada, A., Qu, Y., Ali, S., Sun, N., Lu, H., Yan, R., Zhang, X., Jing, L. J. Hazard. Mater. 2018, 342, 715–723; https://doi.org/10.1016/j.jhazmat.2017.09.005.Search in Google Scholar PubMed

48. Qi, K., Zada, A., Yang, Y., Chen, Q., Khataee, A. Res. Chem. Intermed. 2020, 46, 5281–5295; https://doi.org/10.1007/s11164-020-04262-0.Search in Google Scholar

49. Yasmeen, H., Zada, A., Ali, S., Khan, I., Ali, W., Khan, W., Khan, M., Anwar, N., Ali, A., Flores, A. M. H., Subhan, F. J. Chin. Chem. Soc. 2020, 67, 1611–1617; https://doi.org/10.1002/JCCS.202000205.Search in Google Scholar

50. Ali, W., Ullah, H., Zada, A., Alamgir, M. K., Muhammad, W., Ahmad, M. J., Nadhman, A. Mater. Chem. Phys. 2018, 213, 259–266; https://doi.org/10.1016/j.matchemphys.2018.04.015.Search in Google Scholar

51. Ilyas, T., Raziq, F., Ali, S., Zada, A., Ilyas, N., Shah, R., Wang, Y., Qiao, L. Mater. Des. 2021, 204, 109674; https://doi.org/10.1016/j.matdes.2021.109674.Search in Google Scholar

52. Hamid, A., Khan, M., Hussain, F., Zada, A., Li, T., Alei, D., Ali, A. Z. Phys. Chem. 2021; https://doi.org/10.1515/zpch-2020-1763.Search in Google Scholar

53. Zafar, Z., Yi, S., Li, J., Li, C., Zhu, Y., Zada, A., Yao, W., Liu, Z., Yue, X. Energy Environ. Mater. 2021; https://doi.org/10.1002/eem2.12171.Search in Google Scholar

54. Hussain, Z., Zada, A., Hussain, K., Naz, M. Y., Salam, N. M. A., Ibrahim, K. A. Asia Pac. J. Chem. Eng. 2020, 16, e2610; https://doi.org/10.1002/apj.2610.Search in Google Scholar

55. Zada, A., Khan, M., Qureshi, M. N., Liu, S., Wang, R. Front. Chem. 2020, 7, 941; https://doi.org/10.3389/fchem.2019.00941.Search in Google Scholar PubMed PubMed Central

56. Zada, A., Ali, N., Ateeq, M., Huerta-Flores, A. M., Hussain, Z., Shaheen, S., Ullah, M., Ali, S., Khan, I., Ali, W., Shah, M. I. A., Khan, W. J. Chin. Chem. Soc. 2020, 67, 983–989; https://doi.org/10.1002/jccs.201900398.Search in Google Scholar

57. Subhan, F., Aslam, S., Yan, Z., Yaseen, M., Zada, A., Ikram, M. Separ. Purif. Technol. 2021, 265, 118532; https://doi.org/10.1016/j.seppur.2021.118532.Search in Google Scholar

58. Yasmeen, H., Zada, A., Liu, S. J. Photochem. Photobiol. Chem. 2020, 400, 112681; https://doi.org/10.1016/j.jphotochem.2020.112681.Search in Google Scholar

59. Naeem, M., Yan, Z., Subhan, F., Ullah, A., Aslam, S., Ibrahim, M., Khan, M., Shah, N., Shams, D. F., Ullah, A., Khan, A., Ullah, S., Zada, A., Inamullah, Haris, M., Khan, A. J. Porous Mater. 2020, 27, 1101–1108; https://doi.org/10.1007/s10934-020-00886-0.Search in Google Scholar

60. Zada, A., Khan, M., Khan, M. A., Khan, Q., Yangjeh, A. H., Dang, A., Maqbool, M. Environ. Res. 2021, 195, 110742; https://doi.org/10.1016/j.envres.2021.110742.Search in Google Scholar PubMed

61. Ali, S., Li, Z., Chen, S., Zada, A., Khan, I., Khan, I., Ali, W., Shaheen, S., Qu, Y., Jing, L. Catal. Today 2019, 335, 557–564; https://doi.org/10.1016/j.cattod.2019.03.044.Search in Google Scholar

62. Xu, M., Zada, A., Yan, R., Li, H., Sun, N., Qu, Y. Phys. Chem. Chem. Phys. 2020, 22, 4526–4532; https://doi.org/10.1039/C9CP05147C.Search in Google Scholar PubMed

63. Zada, A., Ali, N., Subhan, F., Anwar, N., Shah, M. I. A., Ateeq, M., Hussain, Z., Zaman, K., Khan, M. Prog. Nat. Sci. Mater. Int. 2019, 29, 138–144; https://doi.org/10.1016/j.pnsc.2019.03.004.Search in Google Scholar

64. Yasmeen, H., Zada, A., Li, W., Xu, M., Liu, S. Mater. Sci. Semicond. Process. 2019, 102, 104598; https://doi.org/10.1016/j.mssp.2019.104598.Search in Google Scholar

65. Qi, K., Liu, S., Zada, A. J. Taiwan Inst. Chem. Eng. 2020, 109, 111–123; https://doi.org/10.1016/j.jtice.2020.02.012.Search in Google Scholar

Received: 2020-10-28
Accepted: 2021-05-06
Published Online: 2021-05-20
Published in Print: 2022-01-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.5.2024 from https://www.degruyter.com/document/doi/10.1515/zpch-2020-1778/html
Scroll to top button