Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) May 4, 2018

Ion-Selective Ligands: How Colloidal Nano- and Micro-Particles Can Introduce New Functionalities

  • Indranath Chakraborty , Dorleta Jimenez de Aberasturi , Nicolas Pazos-Perez , Luca Guerrini , Atif Masood , Ramon A. Alvarez-Puebla , Neus Feliu and Wolfgang J. Parak EMAIL logo

Abstract

Colloidal nano- and micro-particles can introduce new properties and functionalities to existing materials and thus are a valuable building block for the construction of novel materials. This is discussed for the case of ion-selective ligands, hence molecules that can bind specifically ions of one type. First, in case ion-selective fluorescent ligands are attached to the surface of particles, these fluorophores sense the local ion concentration at the particle surface and not the bulk ion concentration. Thus, the ion-response of the ligands can be tuned by attaching them to the surface of particles. Second, in case ligands specific for particular ions are bound to the surface of particles, these ions can provide contrast and thus the particles can be imaged. This involves for example Gd-ions, which provide contrast for magnetic resonance imaging (MRI), and 111In-ions, which provide contrast for imaging of radioactivity. By attaching the ligands to the surface of particles, their physicochemical properties (as for example size and solubility) are changed, which affects their interaction with cells and, consequently, biodistribution. Attachment of ion-chelators for imaging to particles thus allows for tuning their biodistribution. Third, ion-specific ligands can be also attached to the surface of magnetic particles. In this case ions bound to the ligands can be extracted with magnetic field gradients and magnetic separation becomes possible. Therefore, magnetic particles provide a handle to the ligands, which enables the extraction of ions from solution. These examples demonstrate how the attachment of different types of colloidal particles to one existing class of molecules, ion-selective ligands, can open new fields of applications of these molecules.

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (grant DFG grant PA 794/25-1). IC acknowledges the Alexander von Humboldt foundation. This work was funded by the Spanish Ministerio de Economia y Competitividad (CTQ2014-59808R, CTQ2017-88648-R, RYC2015-19107 and RYC2016-20331), the Generalitat de Cataluña (2017SGR883), and the Universitat Rovira i Virgili (2017PFR-URV-B2-02 and 2017EXIT-08). NF acknowledges the Swedish Governmental Agency for Innovation Systems (VINNOVA). AM acknowledges the Higher Education Commission (HEC) and Deutscher Akademischer Austauschdienst (DAAD).

References

1. Q. Zhang, E. Uchaker, S. L. Candelaria, G. Cao, Chem. Soc. Rev. 42 (2013) 3127.10.1039/c3cs00009eSearch in Google Scholar PubMed

2. O. V. Salata, J. Nanobiotechnol. 2 (2004) 3.10.1186/1477-3155-2-3Search in Google Scholar PubMed PubMed Central

3. P. C. Ray, Chem. Rev. 110 (2010) 5332.10.1021/cr900335qSearch in Google Scholar PubMed PubMed Central

4. Z. Ali, A. Z. Abbasi, F. Zhang, P. Arosio, A. Lascialfari, M. F. Casula, A. Wenk, W. Kreyling, R. Plapper, M. Seidel, R. Niessner, J. Knoll, A. Seubert, W. J. Parak, Anal. Chem. 83 (2011) 2877.10.1021/ac103261ySearch in Google Scholar PubMed

5. H. Mohwald, H. Lichtenfeld, S. Moya, A. Voigt, H. Baumler, G. Sukhorov, F. Caruso, E. Donath, Macromol. Symp. 145 (1999) 75.10.1002/masy.19991450109Search in Google Scholar

6. Y. Wang, A. S. Angelatos, F. Caruso, Chem. Mater. 20 (2008) 848.10.1021/cm7024813Search in Google Scholar

7. J. Hühn, C. Carrillo-Carrion, M. G. Soliman, C. Pfeiffer, D. Valdeperez, A. Masood, I. Chakraborty, L. Zhu, M. Gallego, Z. Yue, M. Carril, N. Feliu, A. Escudero, A. M. Alkilany, B. Pelaz, P. del Pino, W. J. Parak, Chem. Mater. 29 (2017) 399.10.1021/acs.chemmater.6b04738Search in Google Scholar

8. A. M. Smith, H. Duan, M. N. Rhyner, G. Ruan, S. Nie, Phys. Chem. Chem. Phys. 8 (2006) 3895.10.1039/b606572bSearch in Google Scholar PubMed

9. T. Ung, L. M. Liz-Marzán, P. Mulvaney, J. Phys. Chem. B 103 (1999) 6770.10.1021/jp991111rSearch in Google Scholar

10. T. Pellegrino, L. Manna, S. Kudera, T. Liedl, D. Koktysh, A. L. Rogach, S. Keller, J. Rädler, G. Natile, W. J. Parak, Nano Lett. 4 (2004) 703.10.1021/nl035172jSearch in Google Scholar

11. W. Wang, X. Ji, A. Kapur, C. Zhang, H. Mattoussi, J. Am. Chem. Soc. 137 (2016) 14158.10.1021/jacs.5b08915Search in Google Scholar PubMed

12. W. Wang, A. Kapur, X. Ji, B. Zeng, D. Mishra, H. Mattoussi, Bioconjug. Chem. 27 (2016) 2024.10.1021/acs.bioconjchem.6b00309Search in Google Scholar PubMed

13. C.-A. J. Lin, R. A. Sperling, J. K. Li, T.-Y. Yang, P.-Y. Li, M. Zanella, W. H. Chang, W. J. Parak, Small 4 (2008) 334.10.1002/smll.200700654Search in Google Scholar PubMed

14. R. A. Sperling, T. Pellegrino, J.K. Li, W.H. Chang, W.J. Parak, Adv. Funct. Mater. 16 (2006) 943.10.1002/adfm.200500589Search in Google Scholar

15. G. Decher, Science 277 (1997) 1232.10.1126/science.277.5330.1232Search in Google Scholar

16. P. Rivera Gil, L. L. del Mercato, P. del Pino, A. Muñoz Javier, W. J. Parak, Nano Today 3 (2008) 12.10.1016/S1748-0132(08)70040-9Search in Google Scholar

17. L. J. De Cock, S. De Koker, B. G. De Geest, J. Grooten, C. Vervaet, J. P. Remon, G. B. Sukhorukov, M. N. Antipina, Angew. Chem. Int. Ed. 49 (2010) 6954.10.1002/anie.200906266Search in Google Scholar PubMed

18. S. De Koker, B. G. De Geest, S. K. Singh, R. De Rycke, T. Naessens, Y. Van Kooyk, J. Demeester, S. C. De Smedt, J. Grooten, Angew. Chem. Int. Ed. 48 (2009) 8485.10.1002/anie.200903769Search in Google Scholar PubMed

19. O. Kreft, A. M. Javier, G. B. Sukhorukov, W. J. Parak, J. Mater. Chem. 17 (2007) 4471.10.1039/b705419jSearch in Google Scholar

20. W. Tong, Y. Zhu, Z. Wang, C. Gao, H. Möhwald, Macromol. Rapid Commun. 31 (2010) 1015.10.1002/marc.200900881Search in Google Scholar PubMed

21. O. S. Wolfbeis, Sens. Actuators B Chem. 29 (1995) 140.10.1016/0925-4005(95)01675-9Search in Google Scholar

22. B. Hötzer, I. L. Medintz, N. Hildebrandt, Small 8 (2012) 2297.10.1002/smll.201200109Search in Google Scholar PubMed

23. M. J. Ruedas-Rama, J. D. Walters, A. Orte, E. A. H.Hall, Anal. Chim. Acta 751 (2012) 1.10.1016/j.aca.2012.09.025Search in Google Scholar PubMed

24. S. Carregal-Romero, E. Caballero-Díaz, L. Beqa, A. M. Abdelmonem, M. Ochs, D. Hühn, B. S. Suau, M. Valcarcel, W. J. Parak, Annu. Rev. Anal. Chem. 6 (2013) 53.10.1146/annurev-anchem-062012-092621Search in Google Scholar PubMed

25. S. Jailani, G. V. Franks, T. W. Healy, J. Am. Ceram. Soc. 91 (2008) 1141.10.1111/j.1551-2916.2008.02277.xSearch in Google Scholar

26. F. Zhang, E. Lees, F. Amin, P. Rivera_Gil, F. Yang, P. Mulvaney, W. J. Parak, Small 7 (2011) 3113.10.1002/smll.201100608Search in Google Scholar PubMed

27. F. Zhang, Z. Ali, F. Amin, A. Feltz, M. Oheim, W. J. Parak, ChemPhysChem 11 (2010) 730.10.1002/cphc.200900849Search in Google Scholar PubMed

28. H. Ohshima, T. W. Healy, L. R. White, J. Colloid Interface Sci. 90 (1982) 17.10.1016/0021-9797(82)90393-9Search in Google Scholar

29. J. J. Lopez-Garcia, J. Horno, C. Grosse, Phys. Chem. Chem. Phys. 3 (2001) 3754.10.1039/b101701mSearch in Google Scholar

30. H. Ohshima, J. Colloid Interface Sci. 323 (2008) 92.10.1016/j.jcis.2008.03.021Search in Google Scholar PubMed

31. J. Z. Wu, Z. D. Li, Annu. Rev. Phys. Chem. 58 (2007) 85.10.1146/annurev.physchem.58.032806.104650Search in Google Scholar PubMed

32. A. Riedinger, F. Zhang, F. Dommershausen, C. Röcker, S. Brandholt, G. U. Nienhaus, U. Koert, W. J. Parak, Small 6 (2010) 2590.10.1002/smll.201000868Search in Google Scholar PubMed

33. M. P. Morales, O. Bomati-Miguel, R. P. De Alejo, J. Ruiz-Cabello, S. Veintemillas-Verdaguer, K. O’Grady, J. Magn. Magn. Mater. 266 (2003) 102.10.1016/S0304-8853(03)00461-XSearch in Google Scholar

34. P. Sharma, S. Brown, G. Walter, S. Santra, B. Moudgil, Adv. Colloid Interface Sci. 123–126 (2006) 471.10.1016/j.cis.2006.05.026Search in Google Scholar PubMed

35. S. Aime, C. Cabella, S. Colombatto, S. Geninatti Crich, E. Gianolio, F. Maggioni, J. Magn. Reson. Imaging 16 (2002) 394.10.1002/jmri.10180Search in Google Scholar PubMed

36. A. N. Oksendal, P. A. Hals, J. Magn. Reson. Imaging 3 (1993) 157.10.1002/jmri.1880030128Search in Google Scholar PubMed

37. A. Bianchi, L. Calabi, F. Corana, S. Fontana, P. Losi, A. Maiocchi, L. Paleari, B. Valtancoli, Coord. Chem. Rev. 204 (2000) 309.10.1016/S0010-8545(99)00237-4Search in Google Scholar

38. W. G. Kreyling, A. M. Abdelmonem, Z. Ali, F. Alves, M. Geiser, N. Haberl, R. Hartmann, S. Hirn, D. J. De Aberasturi, K. Kantner, G. Khadem-Saba, Nat. Nanotechnol. 10 (2015) 619.10.1038/nnano.2015.111Search in Google Scholar PubMed

39. T. N. Angelidis, E. Skouraki, Appl. Catal. A Gen. 142 (1996) 387.10.1016/0926-860X(96)00088-9Search in Google Scholar

40. C. Nowottny, W. Halwachs, K. Schügerl, Sep. Purif. Technol. 12 (1997) 135.10.1016/S1383-5866(97)00041-5Search in Google Scholar

41. M. Baghalha, G. H. Khosravian, H. R. Mortaheb, Hydrometallurgy 95 (2009) 247.10.1016/j.hydromet.2008.06.003Search in Google Scholar

42. M. Moldovan, S. Rauch, G. M. Morrison, M. Gomez, M. Antonia Palacios, Surf. Interface Anal. 35 (2003) 354.10.1002/sia.1541Search in Google Scholar

43. M. Faisal, Y. Atsuta, H. Daimon, K. Fujie, Asia Pac. J. Chem. Eng. 3 (2008) 364.10.1002/apj.156Search in Google Scholar

44. C. T. Yavuz, J. T. Mayo, W. Y. William, A. Prakash, J. C. Falkner, S. Yean, L. Cong, H. J. Shipley, A. Kan, M. Tomson, D. Natelson, Science 314 (2006) 964.10.1126/science.1131475Search in Google Scholar PubMed

45. K. Mandel, F. Hutter, Nano Today 7 (2012) 485.10.1016/j.nantod.2012.05.001Search in Google Scholar

46. G. De Las Cuevas, J. Faraudo, J. Camacho, J. Phys. Chem. C 112 (2008) 945.10.1021/jp0755286Search in Google Scholar

47. A. Z. Abbasi, L. Gutiérrez, L. L. del Mercato, F. Herranz, O. Chubykalo-Fesenko, S. Veintemillas-Verdaguer, W. J. Parak, M. P. Morales, J. M. González, A. Hernando, P. de la Presa, J. Phys. Chem. C 115 (2011) 6257.10.1021/jp1118234Search in Google Scholar

48. B. Zebli, A. S. Susha, G. B. Sukhorukov, A. L. Rogach, W. J. Parak, Langmuir 21 (2005) 4262.10.1021/la0502286Search in Google Scholar PubMed

Received: 2018-03-02
Accepted: 2018-04-08
Published Online: 2018-05-04
Published in Print: 2018-08-28

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.5.2024 from https://www.degruyter.com/document/doi/10.1515/zpch-2018-1172/html
Scroll to top button