Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 13, 2018

On eccentricity-based topological descriptors of water-soluble dendrimers

  • Zahid Iqbal , Muhammad Ishaq , Adnan Aslam EMAIL logo and Wei Gao

Abstract

Previous studies show that certain physical and chemical properties of chemical compounds are closely related with their molecular structure. As a theoretical basis, it provides a new way of thinking by analyzing the molecular structure of the compounds to understand their physical and chemical properties. The molecular topological indices are numerical invariants of a molecular graph and are useful to predict their bioactivity. Among these topological indices, the eccentric-connectivity index has a prominent place, because of its high degree of predictability of pharmaceutical properties. In this article, we compute the closed formulae of eccentric-connectivity–based indices and its corresponding polynomial for water-soluble perylenediimides-cored polyglycerol dendrimers. Furthermore, the edge version of eccentric-connectivity index for a new class of dendrimers is determined. The conclusions we obtained in this article illustrate the promising application prospects in the field of bioinformatics and nanomaterial engineering.

Acknowledgment

The authors thank the reviewers for their constructive comments in improving the quality of this article. This work has been partially supported by National Science Foundation of China (no. 11761083).

  1. Conflict of Interests: The authors hereby declare that there are no conflicts of interest regarding the publication of this article.

References

1. Rücker G, Rücker C. On topological indices, boiling points, and cycloalkanes. J Chem Inf Comp Sci 1999;39:788–802.10.1021/ci9900175Search in Google Scholar

2. Gutman I, Trinajstić N. Graph theory and molecular orbitals. Total φ-electron energy of alternant hydrocarbons. Chem Phys Lett 1972;17:535–8.10.1016/0009-2614(72)85099-1Search in Google Scholar

3. Amić D, Bešlo D, Lučić B, Nikolić S, Trinajstiv N. The vertex-connectivity index revisited. J Chem Inf Model 1998;38:819–22.10.1021/ci980039bSearch in Google Scholar

4. Zhao B, Gan JH, Wu HL. Redefined Zagreb indices of Some Nano Structures. Appl Math Non Linear Sci 2016;1:291–300.10.21042/AMNS.2016.1.00024Search in Google Scholar

5. Gao W, Siddiqui MK, Naeem M, Rehman NA. Topological characterization of carbon graphite and crystal cubic carbon structures. Molecules 2017;22:1496.10.3390/molecules22091496Search in Google Scholar PubMed PubMed Central

6. Gao W, Wang WF. The fifth geometric–arithmetic index of bridge graph and carbon nanocones. J Differ Equ Appl 2017;23:100–9.10.1080/10236198.2016.1197214Search in Google Scholar

7. Gao W, Wang WF. The eccentric-connectivity polynomial of two classes of nanotubes. Chaos Soliton Fract 2016;89:290–4.10.1016/j.chaos.2015.11.035Search in Google Scholar

8. Dimitrov D, Ikica B, Škrekovski R. Remarks on maximum atom-bond connectivity index with given graph parameters. Discrete Appl Math 2017;222:222–6.10.1016/j.dam.2017.01.019Search in Google Scholar

9. Guirao JL, de Bustos MT. Dynamics of pseudo-radioactive chemical products via sampling theory. J Math Chem 2012;50:374–8.10.1007/s10910-010-9788-xSearch in Google Scholar

10. Ahmadi MB, Dimitrov D, Gutman I, Hosseini SA. Disproving a conjecture on trees with minimal atom-bond connectivity index. MATCH Commun Math Comput Chem 2014;72:685–98.Search in Google Scholar

11. Dimitrov D. Efficient computation of trees with minimal atom-bond connectivity index. Appl Math Comput 2013;224:663–70.10.1016/j.amc.2013.08.089Search in Google Scholar

12. Dimitrov D. On structural properties of trees with minimal atom-bond connectivity index. Discrete Appl Math 2014;172:28–44.10.1016/j.dam.2014.03.009Search in Google Scholar

13. Dimitrov D. On structural properties of trees with minimal atom-bond connectivity index II: bounds on B-1- and B-2-branches. Discrete Appl Math 2016;204:90–116.10.1016/j.dam.2015.10.010Search in Google Scholar

14. Falahati-Nezhad F, Azari M, Došlić T. Global forcing number for maximal matchings. Discrete Math 2018;341:801–9.10.1016/j.disc.2017.12.002Search in Google Scholar

15. Došlić T, Zubac I. Counting maximal matchings in linear polymers. Ars Math Contemp 2016;11:255–76.10.26493/1855-3974.851.167Search in Google Scholar

16. Wiener H. Structural determination of paraffin boiling points. J Am Chem Soc 1947;69:17–20.10.1021/ja01193a005Search in Google Scholar PubMed

17. Dureja H, Madan AK. Topochemical models for prediction of cyclin-dependent kinase 2 inhibitory activity of indole-2-ones. J Mol Model 2005;11:525–31.10.1007/s00894-005-0276-3Search in Google Scholar PubMed

18. Ghorbani M, Hemmasi M. Eccentric-connectivity polynomial of C12n+4 fullerenes. Dig J Nanomater Bios 2009;4:545–7.Search in Google Scholar

19. Kumar V, Madan AK. Application of graph theory: models for prediction of carbonic anhydrase inhibitory activity of sulfonamides. J Math Chem 2007;42:925–40.10.1007/s10910-006-9149-ySearch in Google Scholar

20. Ashrafi AR, Došlić T, Saheli M. Computing eccentric-connectivity index of a class of nanostar dendrimers. Kragujevac J Sci 2012;34:65–70.Search in Google Scholar

21. Ilić A. Eccentric-connectivity index. In: Gutman I, Furtula B, editors. Novel molecular structure descriptors – theory and applications II. Kragujevac, Serbia: Univ. Kragujevac, 2010:139–68.Search in Google Scholar

22. Ashrafi AR, Ghorbani M, Hossein-Zadeh MA. The eccentric-connectivity polynomial of some graph operations. Serdica J Comput 2011;5:101–16.10.55630/sjc.2011.5.101-116Search in Google Scholar

23. Ghorbani M, Hosseinzadeh MA. A new version of Zagreb indices. Filomat 2012;26:93–100.10.2298/FIL1201093GSearch in Google Scholar

24. Gupta S, Singh M, Madan AK. Connective eccentricity index: a novel topological descriptor for predicting biological activity. J Mol Graphics Model 2000;18:18–25.10.1016/S1093-3263(00)00027-9Search in Google Scholar

25. Došlić T, Saheli M. Augmented eccentric-connectivity index. Miskolc Math Notes 2011;12:149–57.10.18514/MMN.2011.331Search in Google Scholar

26. Alaeiyan M, Asadpour J, Mojarad R. A numerical method for MEC polynomial and MEC index of one-pentagonal carbon nanocones. Fuller Nanotube Car N 2013;21:825–35.10.1080/1536383X.2011.613546Search in Google Scholar

27. De N, Nayeem SM, Pal A. Modified eccentric-connectivity of generalized thorn graphs. Int J Comput Math 2014;2014:8, Article ID 436140.10.1155/2014/436140Search in Google Scholar

28. Xu X, Guo Y. The edge version of eccentric-connectivity index. Int Math Forum 2012;7:273–80.Search in Google Scholar

29. Aslam A, Ahmed S, Gao W. On topological indices of boron triangular nanotubes. Z Naturforsch 2017;72:711–6.10.1515/zna-2017-0135Search in Google Scholar

30. Aslam A, Bashir Y, Ahmed S, Gao W. On topological indices of certain dendrimer structures. Z Naturforsch 2017;72:559–66.10.1515/zna-2017-0081Search in Google Scholar

31. Aslam A, Jamil MK, Gao W, Nazeer W. On topological ascpects of some dendrimer structures. Nanotechnol Rev 2018;7:123–9.10.1515/ntrev-2017-0184Search in Google Scholar

32. Bashir Y, Aslam A, Kamran M, Qureshi I, Jahangir A, Rafiq M, et al. On forgotten topological indices of some dendrimers structure. Molecules 2017;22:867.10.3390/molecules22060867Search in Google Scholar

33. Mališ M, Došlić N. Nonradiative relaxation mechanisms of UV excited phenylalanine residues: a comparative computational study. Molecules 2017;22:493.10.3390/molecules22030493Search in Google Scholar

34. Dimitrov D, Du Z, da Fonseca CM. On structural properties of trees with minimal atom-bond connectivity index III: trees with pendent paths of length three. Appl Math Comput 2016;282:276–90.10.1016/j.amc.2016.02.019Search in Google Scholar

35. Tomalia DA, Baker H, Dewald JR, Hall M, Kallos G, Martin S, et al. Dendrimers II: architecture, nanostructure and supramolecular. Macromolecules 1986;19:2466–8.10.1021/ma00163a029Search in Google Scholar

36. Froehling PE. Dendrimers and dyes – A review. Dyes Pigments 2001;48:187–95.10.1016/S0143-7208(00)00099-1Search in Google Scholar

37. Hawker CJ, Frechet JM. Three-dimensional dendritic macromolecules: design, synthesis and properties. In: Ebdon JR, Eastmond GC, editors. New methods of polymer synthesis. New York: Chapman and Hall, 1995:290–330.10.1007/978-94-011-0607-8_8Search in Google Scholar

38. Kambe T, Imaoka T, Yamamoto K. Insight into the effect of dendrimer structure on photoluminescence from assembled bismuth complexes. J Inorg Organomet P 2018;28:463–6.10.1007/s10904-017-0705-7Search in Google Scholar

39. Blanckenberg A, Kotze G, Swarts AJ, Malgas-Enus R. Effect of nanoparticle metal composition: Mono- and bimetallic gold/copper dendrimer stabilized nanoparticles as solvent-free styrene oxidation catalysts. J Nanopart Res 2018;20:44.10.1007/s11051-018-4144-3Search in Google Scholar

40. Amreddy N, Babu A, Panneerselvam J, Srivastava A, Muralidharan R, Chen A, et al. Chemo-biologic combinatorial drug delivery using folate receptor-targeted dendrimer nanoparticles for lung cancer treatment. Nanomed Nanotechnol 2018;14:373–84.10.1016/j.nano.2017.11.010Search in Google Scholar PubMed PubMed Central

41. Babamiri B, Salimi A, Hallaj R. Switchable electrochemiluminescence aptasensor coupled with resonance energy transfer for selective attomolar detection of Hg2+ via CdTe@CdS/dendrimer probe and Au nanoparticle quencher. Biosens Bioelectron 2018;102:328–35.10.1016/j.bios.2017.11.034Search in Google Scholar PubMed

42. Suresh R, Singh C, Rewar P. Dendrimers as carriers and its application in therapy. Int J Anal Phar Biomed Sci 2015;4:15–23.Search in Google Scholar

43. Kurczewska J, Ceglowski M, Messyasz B, Schroeder G. Dendrimer-functionalized halloysite nanotubes for effective drug delivery. Appl CLAY Sci 2018;153:134–43.10.1016/j.clay.2017.12.019Search in Google Scholar

44. Kesharwani P, Gothwal A, Iyer AK, Jain K, Chourasia MK, Gupta U. Dendrimer nanohybrid carrier systems: An expanding horizon for targeted drug and gene delivery. Drug Discov Today 2018;23:300–14.10.1016/j.drudis.2017.06.009Search in Google Scholar PubMed

45. Jamshidi A, Maleki B, Zonoz FM, Tayebee R. HPA-dendrimer functionalized magnetic nanoparticles (Fe3O4@D-NH2-HPA) as a novel inorganic-organic hybrid and recyclable catalyst for the one-pot synthesis of highly substituted pyran derivatives. Mater Chem Phys 2018;209:46–59.10.1016/j.matchemphys.2018.01.070Search in Google Scholar

46. Furer VL, Vandyukov AE, Tripathi V, Majoral JP, Caminade AM, Kovalenko VI. Synthesis and study of the vibrational spectra of a first generation phosphorus-containing dendrimer with pyridyl functional groups. J Mol Struct 2018;1162:1–9.10.1016/j.molstruc.2018.02.084Search in Google Scholar

47. Lataifeh A, Kraatz HB, Awwadi FF, Zaitoun MA, Sakai K. Platinum(II)-glutamic acid dendrimer conjugates: synthesis, characterization, DFT calculation, conformational analysis and catalytic properties. Inorg Chim Acta 2018;473:245–54.10.1016/j.ica.2017.12.022Search in Google Scholar

48. Mirzaie M, Rashidi A, Tayebi HA, Yazdanshenas ME. Optimized removal of acid blue 62 from textile waste water by SBA-15/PAMAM dendrimer hybrid using response surface methodology. J Polym Environ 2018;26:1831–43.10.1007/s10924-017-1083-5Search in Google Scholar

49. Liu K, Xu Z, Yin M. Perylenediimide-cored dendrimers and their bioimagingand gene delivery applications. Prog Polym Sci 2015;46:25–54.10.1016/j.progpolymsci.2014.11.005Search in Google Scholar

50. Iqbal Z, Ishaq M, Farooq R. Computing different versions of atom-bond connectivity index of dendrimers. J Inf Math Sci 2017;9:217–29.Search in Google Scholar

51. Funayama K, Imae T. Structural analysis of spherical water-soluble dendrimer by SANS. J Phys Chem Solids 1999;60:1355–7.10.1016/S0022-3697(99)00112-2Search in Google Scholar

52. Yordanov AT, Mollov N, Lodder AL, Woller E, Cloninger M, Walbridge S, et al. A water-soluble triiodo amino acid and its dendrimer conjugate for computerized tomography (CT) imaging. J Serb Chem Soc 2005;70:163–70.10.2298/JSC0502163YSearch in Google Scholar

53. Arai T, Ogawa J, Mouri E, Bhuiyan MP, Nishino N. Formation of submicron scale particles of narrow size distribution from a water-soluble dendrimer with links to porphyrins and a fullerene. Macromolecules 2006;39:1607–13.10.1021/ma0522817Search in Google Scholar

54. Naka K, Fujita M, Tanaka K, Chujo Y. Water-soluble anionic POSS-Core dendrimer: synthesis and copper(II) complexes in aqueous solution. Langmuir 2007;23:9057–63.10.1021/la7013286Search in Google Scholar PubMed

55. Endo K, Ito Y, Higashihara T, Ueda M. Synthesis of a novel water-soluble polyamide dendrimer based on a facile convergent method. Eur Polym J 2009;45:1994–2001.10.1016/j.eurpolymj.2009.04.013Search in Google Scholar

56. Zhiryakova MV, Kuchkina NV, Shifrina ZB, Izumrudov VA. A water-soluble aromatic dendrimer as a model basis for dual-action drugs. Polym Sci Ser A 2011;53:698–706.10.1134/S0965545X1108013XSearch in Google Scholar

57. Takizawa T, Arai T. Control of photoisomerization in water-soluble stilbene dendrimers by conformation of dendrons: How water-soluble dendrimer molecules are dissolved in water. Chem Lett 2012;41:415–7.10.1246/cl.2012.415Search in Google Scholar

58. Debnath S, Saloum D, Dolai S, Sun C, Averick S, Raja K, et al. Dendrimer-curcumin conjugate: a water soluble and effective cytotoxic agent against breast cancer cell lines. Anticancer Agent Me 2013;13:1531–9.10.2174/18715206113139990139Search in Google Scholar PubMed

Received: 2018-08-10
Revised: 2018-09-10
Accepted: 2018-10-29
Published Online: 2018-12-13
Published in Print: 2018-12-19

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.4.2024 from https://www.degruyter.com/document/doi/10.1515/znc-2018-0123/html
Scroll to top button