Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) April 7, 2017

Crystal structure, homogeneity range and electronic structure of rhombohedral γ-Mn5Al8

  • Srinivasa Thimmaiah EMAIL logo , Zachary Tener , Tej N. Lamichhane , Paul C. Canfield and Gordon J. Miller

Abstract

The γ-region of the Mn–Al phase diagram between 45 and 70 at.% Al was re-investigated by a combination of powder and single crystal X-ray diffraction as well as EDS analysis to establish the distribution of Mn and Al atoms. Single crystals of γ-Mn5–x Al8+x were grown using Sn-flux at 650 °C. The crystal structure, atomic coordinates and site occupancy parameters of γ-Mn5−x Al8+x phases were refined from single crystal X-ray data. The γ-Mn5-x Al8+x phase adopts the rhombohedral Cr5Al8-type structure rather than a cubic γ-brass structure. The refined compositions from two crystals extracted from the Al-rich and Mn-rich sides are, respectively, Mn4.76Al8.24(2)(I) and Mn6.32Al6.68(2)(II). The structure was refined in the acentric R3m space group (No.160, Z=6), in order to compare with other reported rhombohedral γ-brasses. In addition, according to X-ray powder diffraction analysis, at the Al-rich side the γ-phase coexists with LT–Mn4Al11 and, at the Mn-rich side, with a hitherto unknown phase. The refined lattice parameters from powder patterns fall in the range a=12.6814(7)−12.6012(5) Å and c=7.9444(2)−7.9311(2) Å from Al-rich to Mn-rich loadings, and the corresponding rhombohedral angles distorted from a pseudo-cubic cell were found to be 89.1(1)°−88.9(1)°. Magnetic susceptibility and magnetization studies of Mn4.92Al8.08(2) are consistent with moment bearing Mn and suggest a spin glass state below 27 K. Tight-binding electronic structure calculations (LMTO-ASA with LSDA) showed that the calculated Fermi level for γ-“Mn5Al8” falls within a pseudogap of the density of states, a result which is in accordance with a Hume-Rothery stabilization mechanism γ-brass type phases.

Acknowledgements

S.T., Z.T., P.C.C. and G.J.M., were supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. T.N.L. was supported by the Critical Materials Institute, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office. This work was carried out at the Ames Laboratory, which is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358.

References

[1] S. Samson, Nature1962, 195, 259.10.1038/195259a0Search in Google Scholar

[2] S. Samson, Acta Crystallogr.1965, 19, 401.10.1107/S0365110X65005133Search in Google Scholar

[3] D. C. Fredrickson, S. Lee, R. Hoffmann, Angew. Chem. Int. Ed.2007, 46, 1958.10.1002/anie.200601678Search in Google Scholar PubMed

[4] M. Conrad, B. Harbrecht, T. Weber, D. Y. Jung, W. Steurer, Acta Crystallogr. B2009, B65, 318.10.1107/S0108768109014013Search in Google Scholar PubMed

[5] T. Weber, J. Dshemuchadse, M. Kobas, M. Conrad, B. Harbrecht, W. Steurer, Acta Crystallogr. B2009, B65, 308.10.1107/S0108768109014001Search in Google Scholar PubMed

[6] J. Dshemuchadse, D. Y. Jung, W. Steurer, Acta Crystallogr B2011, B67, 269.10.1107/S0108768111025390Search in Google Scholar PubMed

[7] K. Kovnir, M. Shatruk, Eur. J. Inorg. Chem.2011, 2011, 3955.10.1002/ejic.201100200Search in Google Scholar

[8] F. Stein, M. Palm, G. Sauthoff, Intermetallics2004, 12, 713.10.1016/j.intermet.2004.02.010Search in Google Scholar

[9] F. Stein, M. Palm, G. Sauthoff, Intermetallics2005, 13, 1056.10.1016/j.intermet.2004.11.001Search in Google Scholar

[10] A. Ormeci, A. Simon, Y. Grin, Angew. Chem. Int. Ed.2010, 49, 8997.10.1002/anie.201001534Search in Google Scholar PubMed

[11] A. Simon, Angew.Chem. Int. Ed.1983, 22, 95.10.1002/anie.198300951Search in Google Scholar

[12] R. L. Johnston, R. Hoffmann, Z. Anorg. Allg. Chem.1992, 616, 105.10.1002/zaac.19926161017Search in Google Scholar

[13] T. F. Faessler and Editor, Zintl Phases: Principles and Recent Developments. [In: Struct. Bonding (Berlin, Ger.), 2011; 139], Springer-Verlag, Berlin, Heidelberg, p. 1–161, 2011.Search in Google Scholar

[14] S. M. Kauzlarich and Editor, Chemistry, Structure, and Bonding of Zintl Phases and Ions. VCH Publishers, Inc., New York, p. 1–306, 1996.Search in Google Scholar

[15] H. Schäfer, B. Eisenmann, W. Müller, Angew.Chem. Int. Ed.1973, 12, 694.10.1002/anie.197306941Search in Google Scholar

[16] U. Mizutani, The Hume-Rothery rules for structurally complex alloy phases. CRC Press, Taylor & Francis Group, Boca Raton, FL, p. 1–324, 2010.10.1142/9789814304771_0011Search in Google Scholar

[17] S. Thimmaiah, N. A. Crumpton, G. J. Miller, Z. Anorg. Allg. Chem.2011, 637, 1992.10.1002/zaac.201100357Search in Google Scholar

[18] S. Thimmaiah, G. J. Miller, Chem. Eur. J.2010, 16, 5461.10.1002/chem.200903300Search in Google Scholar

[19] S. Thimmaiah, G. J. Miller, Inorg. Chem.2013, 52, 1328.10.1021/ic301933aSearch in Google Scholar

[20] W. Hornfeck, S. Thimmaiah, S. Lee, B. Harbrecht, Chem. Eur. J.2004, 10, 4616.10.1002/chem.200400059Search in Google Scholar

[21] S. Thimmaiah, K. W. Richter, S. Lee, B. Harbrecht, Solid State Sci.2003, 5, 1309.10.1016/S1293-2558(03)00178-XSearch in Google Scholar

[22] U. Mizutani, M. Inukai, H. Sato, E. S. Zijlstra, Q. Lin, Phil. Mag.2014, 94, 2571.10.1080/14786435.2014.913820Search in Google Scholar

[23] A.-P. Tsai, Chem. Soc. Rev.2013, 42, 5352.10.1039/c3cs35388eSearch in Google Scholar

[24] T. Takeuchi, H. Sato, U. Mizutani, J. Alloys Compd.2002, 342, 355.10.1016/S0925-8388(02)00253-0Search in Google Scholar

[25] A. T. Paxton, M. Methfessel, D. G. Pettifor, Proc. R. Soc. London Ser. A1997, 453, 1493.10.1098/rspa.1997.0080Search in Google Scholar

[26] W. Xie, J. Liu, V. Pecharsky, G. J. Miller, Z. Anorg. Allg. Chem.2015, 641, 270.10.1002/zaac.201400539Search in Google Scholar

[27] W. Xie, G. J. Miller, Chem. Mater.2014, 26, 2624.10.1021/cm500078wSearch in Google Scholar

[28] O. Gourdon, G. J. Miller, Chem. Mater.2006, 18, 1848.10.1021/cm0526415Search in Google Scholar

[29] O. Gourdon, S. L. Bud’ko, D. Williams, G. J. Miller, Inorg. Chem.2004, 43, 3210.10.1021/ic035419fSearch in Google Scholar

[30] S. Thimmaiah, G. J. Miller, Acta Cryst.2010, E66, i5.Search in Google Scholar

[31] M. Ellner, Metall. Mater. Trans. A1990, 21, 1669.10.1007/BF02672582Search in Google Scholar

[32] R. W. Schonover, G. P. Mohanty, Mater. Sci. Eng.1969, 4, 243.10.1016/0025-5416(69)90068-8Search in Google Scholar

[33] T. Goedecke, W. Koester, Z. Metallk.1971, 62, 727.Search in Google Scholar

[34] WinXPOW, V 3.0.2.1, Vol. STOE & Cie GmbH, Germany, 2011.Search in Google Scholar

[35] APEX2 in APEX2, Vol. Bruker AXS Inc., Madison, Wisconsin, USA, 2013.Search in Google Scholar

[36] SHELXTLv2016 in Vol. Bruker AXS Inc., Madison, Wisconsin, USA, 2016.Search in Google Scholar

[37] O. K. Andersen, Phys. Rev.1975, B12, 3060.10.1103/PhysRevB.12.3060Search in Google Scholar

[38] O. K. Andersen, Phys. Rev.1986, B34, 2439.10.1103/PhysRevB.34.2439Search in Google Scholar

[39] O. K. Andersen, O. Jepsen, Phys. Rev. Lett.1984, 53, 2571.10.1103/PhysRevLett.53.2571Search in Google Scholar

[40] O. K. Andersen, O. Jepsen, D. Glötzel, in Highlights of Condensed Matter Theory (Eds. F. Bassani, F. Fumi and M. P. Tosi) North-Holland, New York, p. 59, 1985.Search in Google Scholar

[41] R. Dronskowski, P. E. Bloechl, J. Phys. Chem.1993, 97, 8617.10.1021/j100135a014Search in Google Scholar

[42] U. Von Barth, L. Hedin, J. Phys. C1972, 5, 1629.10.1088/0022-3719/5/13/012Search in Google Scholar

[43] D. D. Koelling, B. N. Harmon, J. Phys. C1977, 10, 3107.10.1088/0022-3719/10/16/019Search in Google Scholar

[44] O. Jepsen, O. K. Andersen, Z. Phys. B1995, 97, 35.10.1007/BF01317585Search in Google Scholar

[45] P. E. Blöchl, O. Jepsen, O. K. Andersen, Phys. Rev.1994, B49, 16223.10.1103/PhysRevB.49.16223Search in Google Scholar PubMed

[46] A. Kontio, E. D. Stevens, P. Coppens, R. D. Brown, A. E. Dwight, J. M. Williams, Acta Cryst.1980, B36, 435.10.1107/S056774088000341XSearch in Google Scholar

[47] Z. W. Liu, C. Chen, Z. G. Zheng, B. H. Tan, R. V. Ramanujan, J. Mater. Sci.2012, 47, 2333.10.1007/s10853-011-6049-8Search in Google Scholar

[48] H. Fang, J. Cedervall, F. J. M. Casado, Z. Matej, J. Bednarcik, J. Ångström, P. Berastegui, M. Sahlberg, J. Alloys Compd.2017, 692, 198.10.1016/j.jallcom.2016.09.047Search in Google Scholar

[49] J. H. Park, Y. K. Hong, S. Bae, J. J. Lee, J. Jalli, G. S. Abo, N. Neveu, S. G. Kim, C. J. Choi, J. G. Lee, J. Appl. Phys.2010, 107, 09A731.10.1063/1.3337640Search in Google Scholar

[50] L. Pauling, B. Kamb, Proc. Natl. Acad. Sci. U. S. A.1986, 83, 3569.10.1073/pnas.83.11.3569Search in Google Scholar PubMed PubMed Central

[51] M. Ellner, J. Braun, B. Predel, Z. Metallkd.1989, 80, 374.Search in Google Scholar

[52] T. Lindahl, S. Westman, Acta Chem. Scand.1969, 23, 1181.10.3891/acta.chem.scand.23-1181Search in Google Scholar

[53] J. K. Brandon, W. B. Pearson, P. W. Riley, C. Chieh, R. Stokhuyzen, Acta Cryst.1977, B33, 1088.10.1107/S0567740877005433Search in Google Scholar

[54] F. Stein, S. C. Vogel, M. Eumann, M. Palm, Intermetallics2010, 18, 150.10.1016/j.intermet.2009.07.006Search in Google Scholar

[55] U. Mizutani, R. Asahi, H. Sato, T. Noritake, T. Takeuchi, J. Phys. Condens. Matter.2008, 20, 275228.10.1088/0953-8984/20/27/275228Search in Google Scholar PubMed

[56] W. Koester, E. Wachtel, K. Grube, Z. Metallkd.1963, 54, 393.Search in Google Scholar

[57] F. Jimenez-Villacorta, J. L. Marion, T. Sepehrifar, M. Daniil, M. A. Willard, L. H. Lewis, Appl. Phys. Lett.2012, 100, 112408/1.Search in Google Scholar

[58] Q. Lin, J. D. Corbett, J. Am. Chem. Soc.2007, 129, 6789.10.1021/ja069143xSearch in Google Scholar PubMed

[59] Q. Lin, J. D. Corbett, Inorg. Chem.2008, 47, 7651.10.1021/ic800694jSearch in Google Scholar PubMed

[60] Q. Lin, J. D. Corbett, Inorg. Chem.2010, 49, 10436.10.1021/ic101356nSearch in Google Scholar PubMed

[61] H. Ko, O. Gourdon, D. Gout, E.-D. Mun, S. Thimmaiah, G. J. Miller, Inorg. Chem.2010, 49, 11505.10.1021/ic101671kSearch in Google Scholar PubMed

[62] O. Gourdon, D. Gout, D. J. Williams, T. Proffen, S. Hobbs, G. J. Miller, Inorg. Chem.2006, 46, 251.10.1021/ic0616380Search in Google Scholar PubMed


Supplemental Material:

The online version of this article (DOI: https://doi.org/10.1515/zkri-2017-0003) offers supplementary material, available to authorized users.


Received: 2017-1-6
Accepted: 2017-3-7
Published Online: 2017-4-7
Published in Print: 2017-7-26

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.4.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2017-0003/html
Scroll to top button