Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) October 31, 2015

Antisymmetric exchange in La-substituted BiFe0.5Sc0.5O3 system: symmetry adapted distortion modes approach

  • Dmitry D. Khalyavin EMAIL logo , Andrei N. Salak , Pascal Manuel , Nikolai M. Olekhnovich , Anatoly V. Pushkarev , Yury V. Radysh , Alexey V. Fedorchenko , Elena L. Fertman , Vladimir A. Desnenko and Mário G.S. Ferreira

Abstract

Neutron powder diffraction measurements on the 35 % La-substituted Bi1−xLaxFe0.5Sc0.5O3 composition revealed that the samples obtained under high-pressure (6 GPa) and high-temperature (1500 K) conditions crystalize into a distorted perovskite structure with the orthorhombic Pnma symmetry and the unit cell parameters: ao = 5.6745(2) Å, bo = 7.9834(3) Å and co = 5.6310(2) Å. A long-range magnetic ordering takes place below 220 K and implies a G-type magnetic structure with the moments 4.10(4)μB per Fe aligned predominately along the orthorhombic c-axis. The space group representation theory using the orthorhombic symmetry yields four bi-linear coupling schemes for the magnetic order parameters imposed by antisymmetric exchange interactions. The couplings are analysed based on symmetry adapted distortion modes defined in respect of the undistorted cubic perovskite structure. The approach allows a quantitative estimation of the coupling strength. It is shown that the experimentally found spin configuration combines the magnetic order parameters coupled by the atomic displacement modes with the largest amplitudes. The results indicate that the antisymmetric exchange is the dominant anisotropic term which fully controls the direction of the Fe3+ spins in the distorted perovskite lattice.


Corresponding author: Dmitry D. Khalyavin, ISIS Facility, Rutherford Appleton Laboratory OX11, 0QX Didcot, UK, E-mail:

Acknowledgments

This work was supported by project TUMOCS. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 645660.

References

[1] S.-W. Cheong, M. Mostovoy, Nat. Mater.2007, 6, 13.Search in Google Scholar

[2] G. Catalan, J. F. Scott, Adv. Mater.2009, 21, 2463.Search in Google Scholar

[3] A. P. Pyatakov, A. K. Zvezdin, Physics – Uspekhi2012, 55, 557.10.3367/UFNe.0182.201206b.0593Search in Google Scholar

[4] M. Elhajal, B. Canals, C. Lacroix, Phys. Rev. B2002, 66, 014422.10.1103/PhysRevB.66.014422Search in Google Scholar

[5] L. Messio, O. Cepas, C. Lhuillier, Phys. Rev. B2010, 81, 064428.10.1103/PhysRevB.81.064428Search in Google Scholar

[6] I. E. Dzialoshinskii, Sov. Phys. JETP1957, 5, 1259.Search in Google Scholar

[7] I. Dzyaloshinskii, J. Phys. Chem. Solids1958, 4, 241.Search in Google Scholar

[8] T. Moriya, Phys. Rev.1960, 120, 91.Search in Google Scholar

[9] F. Keffer, T. Moriya, Phys. Rev.1962, 126, 896.Search in Google Scholar

[10] B. J. Campbell, H. T. Stokes, D. E. Tanner, D. M. Hatch, J. Appl. Crystallogr.2006, 39, 607.Search in Google Scholar

[11] D. Orobengoa, C. Capillas, M. I. Aroyo, J. M. Perez-Mato, J. Appl. Cryst.2009, 42, 820.Search in Google Scholar

[12] J. M. Perez-Mato, D. Orobengoa, M. I. Aroyo, Acta Cryst A2010, 66, 558.10.1107/S0108767310016247Search in Google Scholar

[13] D. D. Khalyavin, A. N. Salak, N. M. Olekhnovich, A. V. Pushkarev, Yu. V. Radyush, P. Manuel, I. P. Raevski, M. L. Zheludkevich, M. G. S. Ferreira, Phys. Rev. B2014, 89, 174414.10.1103/PhysRevB.89.174414Search in Google Scholar

[14] S. A. Prosandeev, D. D. Khalyavin, I. P. Raevski, A. N. Salak, N. M. Olekhnovich, A. V. Pushkarev, Yu V. Radyush, Phys. Rev. B2014, 90, 054110.Search in Google Scholar

[15] L. C. Chapon, P. Manuel, P. G. Radaelli, C. Benson, L. Perrott, S. Ansell, N. J. Rhodes, D. Raspino, D. Duxbury, E. Spill, J. Norris, Neutron News2011, 22, 22.10.1080/10448632.2011.569650Search in Google Scholar

[16] J. Rodriguez Carvajal, Physica B1993, 193, 55.10.1016/0921-4526(93)90108-ISearch in Google Scholar

[17] H. T. Stokes, D. M. Hatch, B. J. Campbell, ISOTROPY Software Suite, iso.byu.edu.Search in Google Scholar

[18] A. M. Glazer, Acta Crystallogr. B1972, 28, 3384.10.1107/S0567740872007976Search in Google Scholar

[19] C. J. Howard, H. T. Stokes, Acta Crystallogr.1998, B54, 782.Search in Google Scholar

[20] P. M. Woodward, Acta Cryst. B1997, 53, 44.10.1107/S0108768196012050Search in Google Scholar

[21] E. F. Bertaut, Acta Cryst. A1968, 24, 217.10.1107/S0567739468000306Search in Google Scholar

[22] Yu. A. Izumov, V. E. Naish, R. P. Ozerov, Neutron Diffraction of Magnetic Materials, Consulting Bureau, New York, 1991.10.1007/978-1-4615-3658-1Search in Google Scholar

[23] L. Bellaiche, Z. Gui, I. A. Kornev, J. Phys.: Condens. Matter2012, 24, 312201.10.1088/0953-8984/24/31/312201Search in Google Scholar PubMed

[24] D. D. Khalyavin, A. N. Salak, A. B. Lopes, N. M. Olekhnovich, A. V. Pushkarev, Yu. V. Radyush, E. L. Fertman, V. A. Desnenko, A. V. Fedorchenko, P. Manuel, A. Feher, J. M. Vieira, M. G. S. Ferreira, arXiv:1508.07915.Search in Google Scholar

Received: 2015-6-25
Accepted: 2015-8-21
Published Online: 2015-10-31
Published in Print: 2015-12-1

©2015 by De Gruyter

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2015-1873/html
Scroll to top button