Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 18, 2018

Model Predictive Control and Controller Parameter Optimisation of Combustion Instabilities

  • I. Yazar EMAIL logo , F. Caliskan and R. Vepa

Abstract

In this paper the application of model predictive control (MPC) to a two-mode model of the dynamics of the combustion process is considered. It is shown that the MPC by itself does not stabilize the combustor and the control gains obtained by applying the MPC algorithms need to be optimized further to ensure that the phase difference between the two modes is also stable. The results of applying the algorithm are compared with the open loop model amplitude responses and to the closed loop responses obtained by the application of a direct adaptive control algorithm. It is shown that the MPC coupled with the cost parameter optimisation proposed in the paper, always guarantees the closed loop stability, a feature that may not always be possible with an adaptive implementations.


Present address: I. Yazar, Department of Mechatronics, Eskisehir Osmangazi University, Eskisehir Vocational School, Industrial Zone Campus, Eskisehir, Turkey


Funding statement: This study was supported from Eskisehir Osmangazi University fund of scientific research project No. 2015-975.

Nomenclature

aˉ

speed of sound

A

state distribution matrix

B

control distribution matrix

F

exchange of momentum

J

cost function

k

subscript index

KˆD

differential gain

KˆP

proportional gain

K

gain

L

length of combustion chamber

p

pressure fluctuation

p

local pressure

P

exchange of energy

q

scaling factor in the cost function

Q

terminal state weighting matrix in cost function

QN

terminal state weighting matrix in cost function

Qˉ

block diagonal matrix of weighting matrices

r

scaling factors in the cost function

rk

modal amplitudes

R

control input weighting matrix in cost function

Rˉ

block diagonal matrix of weighting matrices

t

time

uk

scalar control input

u

control input vector in dynamic model

U

control input vector in prediction model

vg

local velocity of the gas phase

W

exchange of mass

x

state vector

y

output vector

yk

scalar output

αk

model parameters

β

model parameter

δk

model parameters

γˉ

mean ratio of specific heats

γk

model parameters

θk

model parameters

ρ

local density of the two phase mixture

ωk

model parameters

derivative

Φ

phase angle

gradient

References

1. Rijke PL. Notiz über eine neue Art, die in einer an beiden Enden offenen Röhre enthaltene Luft in Schwingungen zu versetzen. Annalen der Physik und Chemie. 1859;183(6):339–43.10.1002/andp.18591830616Search in Google Scholar

2. Vepa R. Dynamic modelling, simulation and control of energy generation, Lecture notes in Energy 20, 1st ed. London: Springer-Verlag, 2013:359–60. ISBN 978-1-4471-5400-6.10.1007/978-1-4471-5400-6Search in Google Scholar

3. Feldman KT. Review of the literature on Rijke thermoacoustic phenomena. J Sound Vib. 1968;7(1):83–89.10.1016/0022-460X(68)90159-4Search in Google Scholar

4. Bisio G, Rubatto G. Sondhauss and Rijke oscillations – thermodynamic analysis, possible applications and analogies. Energy. 1999;24(2):117–31.10.1016/S0360-5442(98)00090-5Search in Google Scholar

5. Raun RL, Beckstead MW, Finlinson JC, Brooks KP. Review of Rijke tubes, Rijke burners and related devices. Prog Energy Combustion Sci. 1993;19(4):313–64.10.1016/0360-1285(93)90007-2Search in Google Scholar

6. Heckl MA. Active control of the noise from a Rijke tube. J Sound Vib. 1988;124(1):117–33.10.1016/S0022-460X(88)81408-1Search in Google Scholar

7. Hantschk CC, Vortmeyer D. Numerical simulation of self-excited thermoacoustic instabilities in a Rijke tube. J Sound Vib. 1999;227(3):511–22.10.1006/jsvi.1999.2296Search in Google Scholar

8. Matveev K. Thermoacoustic Instabilities in the Rijke tube, experiments and modeling. Ph. D. Dissertation, Pasadena, Ca., USA: California Institute of Technology, 2003.Search in Google Scholar

9. Ćosić B, Bobusch BC, Moeck JP, Paschereit CO. Open-loop control of combustion instabilities and the role of the flame response to two-frequency forcing. J Eng Gas Turbines Power. 2012;134(6):061502.10.1115/1.4005986Search in Google Scholar

10. Annaswamy AM, Ghoniem AF. Active control of combustion instability: theory and practice. IEEE Control Syst Mag. 2002;22(6):37–54.10.1109/MCS.2002.1077784Search in Google Scholar

11. Dowling AP, Morgans AS. Feedback control of combustion oscillations. Annu Rev Fluid Mech. 2005;37:151–82.10.1146/annurev.fluid.36.050802.122038Search in Google Scholar

12. Hong BS, Ray A, Yang V. Wide-range robust control of combustion instability. Combust Flame. 2002;128(3):242–58.10.1016/S0010-2180(01)00349-2Search in Google Scholar

13. Annaswamy AM, Fleil M, Rumsey JW, Prasanth R, Hathout JP, Ghoniem AF. Thermoacoustic instability: model-based optimal control designs and experimental validation. IEEE Trans Control Syst Technol. 2000;8(6):905–18.10.1109/87.880593Search in Google Scholar

14. Jain H, Ananthkrishnan N, Culick F. Feedback-linearization-based adaptive control and estimation of a nonlinear combustion instability model. AIAA Guidance, Navigation, and Control Conference and Exhibit, 2005. DOI:10.2514/6.2005-5847.Search in Google Scholar

15. Guyot D, Rößler M, Bothien MR, Paschereit CO. Active control of combustion instability using pilot and premix fuel modulation, 14th International Congress on Sound and Vibration, ICSV14, Cairns, Australia, 2007. Available at: https://www.acoustics.asn.au/conference_proceedings/ICSV14/papers/p235.pdfSearch in Google Scholar

16. Krstic M, Krupadanam A, Jacobson C. Self-tuning control of a nonlinear model of combustion instabilities. IEEE Trans Control Syst Tech. 1999;7(4):424–36.10.1109/87.772158Search in Google Scholar

17. Yi T, Santavicca DA. Flame transfer functions for liquid-fueled swirl-stabilized turbulent lean direct fuel injection combustion. J Eng Gas Turbines Power. 2010;132(2):021506.10.1115/1.3157101Search in Google Scholar

18. Rosentsvit L, Levy Y, Erenburg V, Sherbaum V, Ovcharenko V, Chudnovsky B, et al. Extension of the combustion stability range in dry low NOx lean premixed gas turbine combustor using a fuel rich annular pilot burner. J Eng Gas Turbines Power. 2014;136(5):051509.10.1115/1.4026186Search in Google Scholar

19. Hervas JR, Zhao D, Reyhanoglu M. Observer–based control of Rijke-type combustion instability, AIP Conference Proceedings. 2014; 1637: 899. DOI: 10.1063/1.4904662.Search in Google Scholar

20. Akhmadullin AN, Ahmethanov EN, Iovleva OV, Mitrofanov GA. Combustion instability control in the model of combustion chamber. J Phys Conf Ser. 2013;479:012004.10.1088/1742-6596/479/1/012004Search in Google Scholar

21. Culick FE. Combustion instabilities in liquid-fueled propulsion systems – AGARD, 1988. Available at: https://authors.library.caltech.edu/22028/1/307_Culick_FEC_1988.pdf. Accessed: 3 Apr 2018.Search in Google Scholar

22. Culick FE. Nonlinear behavior of acoustic waves in combustion chambers – I. Acta Astronaut. 1976;3(9–10):715–34.10.1016/0094-5765(76)90107-7Search in Google Scholar

23. Fung YT, Yang V, Sınha A. Active control of combustion instabilities with distributed actuators. Combustion Sci Technol. 1991;78(4–6):217–45.10.1080/00102209108951750Search in Google Scholar

24. Paparizos L, Culick FE. The two-mode approximation to nonlinear acoustics in combustion chambers I. Exact solution for second order acoustics. Combustion Sci Technol. 1989;65(1):39–65.10.1080/00102208908924041Search in Google Scholar

25. Fung YT, Yang V. Active control of nonlinear pressure oscillations in combustion chambers. J Prop Power. 1992;8:1282–89.10.2514/3.11474Search in Google Scholar

26. Yang V, Kim SI, Culick FE. Third-order nonlinear acoustic waves and triggering of pressure oscillations in combustion chambers, Part I: longitudinal modes, AIAA-87-1873, AIAA/SAE/ASME/ASEE 23rd Joint Propulsion Conf., San Diego, CA, USA, 1987:1–9.10.2514/6.1987-1873Search in Google Scholar

27. Culick FE. Some recent results for nonlinear acoustics in combustion chambers. AIAA J. 1994;32(1):146–69.10.2514/3.11962Search in Google Scholar

28. Hong BS, Yang V, Ray A. Robust feedback control of combustion instability with modeling uncertainty. Combust Flame. 2000;120(1–2):91–106.10.1016/S0010-2180(99)00085-1Search in Google Scholar

29. Wijewardana S, Shaheed MH, Vepa R. Optimum power output control of a wind turbine rotor. Int J Rotating Mach. 2016;1–8. DOI:10.1155/2016/6935164Search in Google Scholar

30. Kennedy J, Eberhart R. Particle swarm optimization. Proceedings of ICNN’95 – International Conference on Neural Networks. DOI:10.1109/icnn.1995.488968.Search in Google Scholar

31. Parsopoulos KE, Vrahatis MN. Recent approaches to global optimization problems through particle swarm optimization. Nat Comput. 2002;1:235–306. Available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.301.8319&rep=rep1&type=pdf.10.1023/A:1016568309421Search in Google Scholar

32. Gharghory SM, Kamal HA. Optimal tuning of PID controller using adaptive hybrid particle swarm optimization algorithm. Int J Comput Commun Control. 2012;7(1):101.10.15837/ijccc.2012.1.1426Search in Google Scholar

33. Mohammadi E, Montazeri-Gh M, Khalaf P. Metaheuristic design and optimization of fuzzy-based gas turbine engine fuel controller using hybrid invasive weed optimization/particle swarm optimization algorithm. J Eng Gas Turbines Power. 2013;136(3):031601.10.1115/1.4025884Search in Google Scholar

34. Zhang Q, Ogren RM, Kong SC. Application of improved artificial bee colony algorithm to the parameter optimization of a diesel engine with pilot fuel injections. J Eng Gas Turbines Power. 2017;139(11):112801.10.1115/1.4036766Search in Google Scholar

35. Culick FE. Unsteady motions in combustion chambers for propulsion systems. RTO AGARDograph, AG-AVT-039, 2006. Available at: www.dtic.mil/get-tr-doc/pdf?AD=ADA466461. Accessed: 3 Apr 2018.Search in Google Scholar

Received: 2017-12-18
Accepted: 2018-02-01
Published Online: 2018-04-18
Published in Print: 2019-05-27

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.4.2024 from https://www.degruyter.com/document/doi/10.1515/tjj-2017-0062/html
Scroll to top button