Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 26, 2017

A posteriori estimates for a coupled piezoelectric model

  • Ulrich Langer , Sergey Repin EMAIL logo and Tatiana Samrowski

Abstract

The paper is related to a coupled problem describing piezoelectric effects in an elastic body. For this problem, we deduce majorants of the distance between the exact solution and any approximation in the respective energy class of functions satisfying the boundary conditions. The majorants are fully computable and do not contain mesh dependent constants. They vanish if and only if an approximate solution coincides with the exact one and provide guaranteed upper bounds of errors in terms of the natural energy norm associated with the coupled problem studied.

MSC 2010: 35J20; 65N15; 65N30

References

[1] T. Buchukuri, O. Chkadua, D. Natroshvili, and A.-M. Sändig, Solvability and regularity results to boundary-transmission problems for metallic and piezoelectric elastic materials. Berichte aus dem Institut für Angewandte Analysis und Numerische Simulation, IANS, Preprint 2005/004.Search in Google Scholar

[2] W. Geis, A.-M. Sändig, and G. Mishuris, Piezoelectricity in multi-layer actuators Modelling and analysis in two and three dimensions. Berichte aus dem Institut für Angewandte Analysis und Numerische Simulation, IANS, Preprint 2003/023.Search in Google Scholar

[3] S. Kaliski and G. Patykiewicz, Dynamical equation of motion coupled with the field of temperature and resolving function for elastic and inelastic anisotropic bodies in the magnetic fields. Proc. Vibr. Problem1 (1960), No. 4.Search in Google Scholar

[4] L. Knopoff, The interaction between elastic wave motions and a magnetic field in electric conductors. J. Geophys. Res. 60 (1955), 441-456.10.1029/JZ060i004p00441Search in Google Scholar

[5] Yu. Kuznetsov and S. Repin, Guaranteed lower bounds of the smallest eigenvalues of elliptic differential operators. Russian J. Numer. Anal. Math. Modelling21 (2003), No. 2, 135-156.10.1515/jnum-2013-0005Search in Google Scholar

[6] O. Mali, P. Nettaanmäki, and S. Repin, Accuracy Verification Methods. Theory and Algorithms. Springer, New York, 2014.10.1007/978-94-007-7581-7Search in Google Scholar

[7] R. D. Mindlin, On the equations of motion of piezoelectric crystals. In: Problems of Continuum Mechanics (Ed. J. R. M. Radok). SIAM, 1961, pp. 282-290.Search in Google Scholar

[8] R. D. Mindlin, Polarization gradient in elastic dielectrics. Int. J. Solids Structures4 (1968), 637-642.10.1007/978-3-7091-2998-2Search in Google Scholar

[9] R. D. Mindlin, Elasticity, piezoelasticity and crystal lattice dynamics. J. Elasticity2 (1972), 4, 217-282.10.1007/BF00045712Search in Google Scholar

[10] A. Nazarov and S. Repin, Exact constants in Poincare type inequalities for functions with zero mean boundary traces. Mathematical Methods in the Applied Sciences303 (2015), No. 15, 3195-3207.10.1002/mma.3290Search in Google Scholar

[11] S. Repin, A posteriori error estimation for nonlinear variational problems by duality theory. Zapiski Nauch. Semin. (POMI)243 (1997), 201-214 (in Russian).10.1007/BF02673600Search in Google Scholar

[12] S. Repin, A unified approach to a posteriori error estimation based on duality error majorants. Modelling ’98 (Prague), Math. Comput. Simulation50 (1999), No. 1-4, 305-321.10.1016/S0378-4754(99)00081-6Search in Google Scholar

[13] S. Repin, A Posteriori Estimates for Partial Differential Equations. Radon Series on Computational and Applied Mathematics, Vol. 4. Walter de Gruyter GmbH & Co. KG, Berlin, 2008.10.1515/9783110203042Search in Google Scholar

[14] S. Repin, Computable Majorants of constants in the Poincare and Friedrichs inequalities. J. Math. Sci. 186 (2012), No. 2, 307-321.10.1007/s10958-012-0987-9Search in Google Scholar

[15] S. Repin, T. Samrowski, and S. Sauter, Combined a posteriori modelling-discretization error estimate for elliptic problems with complicated interfaces. ESAIM: Math. Model. Num. Anal. 46 (2012), No. 6, 1389-1405.10.1051/m2an/2012007Search in Google Scholar

[16] S. Repin and J. Valdman, Functional a posteriori error estimates for problems with nonlinear boundary conditions. J. Numer. Math. 16 (2008), No. 1, 51-81.10.1515/JNUM.2008.003Search in Google Scholar

[17] T. Samrowski, Combined error estimates in the case of the dimension reduction. CMAM14 (2014), 113-134.10.1515/cmam-2013-0024Search in Google Scholar

[18] P. Steinhorst, Anwendung adaptiver FEM für piezoelektrische und spezielle mechanische Probleme. Dissertation, Fakultät für Mathematik, Technische Universitat Chemnitz, 2009.Search in Google Scholar

[19] R. A. Toupin, The elastic dielectrics. J. Rat. Mech. Analysis5 (1956), 849-916.10.1512/iumj.1956.5.55033Search in Google Scholar

[20] R. A. Toupin, A dynamical theory of elastic dielectrics. Int. J. Engrg. Sci. 1 (1963), No. 1,101-126.10.1016/0020-7225(63)90027-2Search in Google Scholar

[21] M. Voigt, Lehrbuch der Kristall-Physik. Teubner, Leipzig, 1910.10.1007/BF01693317Search in Google Scholar

Received: 2017-4-27
Accepted: 2017-6-7
Published Online: 2017-7-26
Published in Print: 2017-8-28

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.4.2024 from https://www.degruyter.com/document/doi/10.1515/rnam-2017-0025/html
Scroll to top button